

 Navigation

 	
 index

 	
 next |

 	STON Edge Server 2.3.4 documentation

STON Edge Server Complete Guide

	Author:	WineSOFT Inc.

	Version:	2.4.3, Jan 20, 2017

0. Overview

	Chapter 1. STON Edge Server

1. Basics

	Chapter 2. Getting Started
	Setting Up the Server

	Setting Up the OS

	Installation

	Obtaining a License

	Update

	Run

	Hello World

	Origin Server

	API Call

	Hardware Status

	Restart/Quit

	Caching Reset

	Chapter 3. Configuration
	Reload Settings

	Global Settings (server.xml)

	Virtual Host Settings (vhosts.xml)

	Checking the Virtual Host List

	Confirm Configuration

	Configuration History

	Restore Configuration

	Configuration Download

	Configuration Upload

2. HTTP Caching

	Chapter 4. Caching Policy
	Time To Live (TTL)

	Update Policy

	Accept-Encoding Header

	Case Sensitivity

	QueryString Differentiation

	Vary Header

	POST Request Caching

	Chapter 5. Content Purge
	Purge

	Expire

	ExpireAfter

	HardPurge

	Default Purge Behavior

	HTTP Method

	POST Standard

	Chapter 6. Handling HTTP Requests
	Session Management

	Client Cache-Control

	Response Headers

	Client Request/Response Header Modification

	URL Preprocessing

	Compression

	Chapter 7. Origin Server
	Error Detection and Recovery

	Health-Checker

	Origin Address Use Policy

	Origin Status Monitoring

	Origin Status Reset

	Overload Detection

	Origin Selection

	Session Recycle

	Range Request

	Initializing the Entire Range

	Keeping Client Requests

	Origin Request Default Header

	Origin Request Header Modification

	Redirect Tracking

	Chapter 8. Bypass (Pass-through)
	No-Cache Request Bypass

	GET/POST Bypass

	Fixed Origin Servers

	Fixed Origin Sessions

	Bypass Header

	Port Bypass

	Chapter 9. HTTPS
	Service Configuration

	SSL/TLS Acceleration

	CipherSuite Selection

	Checking the CipherSuite

	Multi-Domain Configuration

	Enabling Security Protocol

	HSTS

3. Advanced Features

	Chapter 10. Monitoring & Statistics
	Data Range

	Host Aggregate Statistics

	System Statistics

	Virtual Host Statistics

	View

	Checking the Virtual Host List

	Caching Information

	Log Trace

	Chapter 11. SNMP
	Variables

	Activation

	Virtual Host/View Variables

	Community

	meta

	system

	global

	cache

	cache.vhost

	cache.view

	Chapter 12. Log
	Install Log

	Info Log

	Deny Log

	OriginError Log

	SysLog Transfer

	Saving Virtual Host Logs

	DNS Log

	Access Log

	Custom Access Log Format

	Origin Log

	Monitoring Log

	FileSystem Log

	FTP Transfer

	Chapter 13. WM (Web Management)
	Connection

	Account

	Update to Latest Version

	Menu Structure

	Global Settings

	Virtual Host Management

	Cluster

	Content Control

	System Information

	Service Status

4. Management & Operation

	Chapter 14. Advanced Virtual Host Configuration
	URL Preprocessing

	Facade Virtual Host

	Sub-Path

	Redirect Tracing

	Virtual Host Link

	Chapter 14. Access Control
	Server Access Control

	GeoIP

	Virtual Host Access Control

	Chapter 15. Bandwidth
	Virtual Host Bandwidth Limits

	Bandwidth Throttling

	Chapter 16. Media
	Reordering MP4/M4A Header

	Trimming

	Multi-Trimming

	MP4 HLS

	MP3 HLS

	DIMS

	Chapter 17. File System
	Mount

	Searching for Virtual Hosts

	File/Directory

	File Properties

	Reading Files

	Deleting Files

	File Expansion

	Wowza Integration

	Chapter 18. Optimization and More
	Indexing

	Memory Structure

	Memory Management

	System Free Memory

	Caching Service Memory

	Socket Memory

	TCP Segmentation Offload

	Client Request Limit

	HTTP Client Session Count

	Request hit ratio

	Byte hit ratio

	Origin Server Failure Policy

	Time Units and Expressions

	Emergency Mode

	Disk Hot-Swap

	SyncStale

Appendix

	Appendix A: Graph
	Global Resource

	Virtual Host

	Appendix B: Cacti Monitoring
	Adding Templates

	Device Registration

	Graph Tree Creation

	Graph Check

	Appendix C: Dynamic Page Exceptions

	Appendix D: Release Notes
	v2.4.x

	v2.3.x

	v2.2.x

	v2.1.x

	v2.0.x

[image: _images/WineSOFT_origin.png]

[image: _images/ston.png]

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STON Edge Server 2.3.4 documentation

Chapter 1. STON Edge Server

Principles of Service Design

The success of a service depends on availability, speed, and scalability. Kate Matsudaira, author of “Building Scalable Web Architecture and Distributed Systems”, also emphasized these three principles.

Availability

A service must always be available. In the event of failure, ninety percent of users will move on to competitors. While there is no such thing as a perfect system, recovering from failures must be quick.

Speed

In business, time is money, and in e-commerce, high latency will lead to a drop in sales. For every 0.1 second of latency, there is a one percent decrease in revenue. 47 percent of Amazon.com customers want a website loaded on their screen within two seconds.

Scalability

Regardless of the number of users, the service must always be reliable. Scalability is the effort required to increase the system’s capacity to handle more load, and can also refer to how easy it is to add more storage or how many more transactions can be processed. Scalability in maintenance is also important: it should be easy to diagnose and understand problems and implement updates or fixes.

The service is most effective when all the principles can be upheld at the smallest possible cost. Cost is not limited to just money, but also includes time, effort, and training.

A successful service must grow, and when it does, it must be able to manage more clients and more content. However, as the system grows, it becomes harder to uphold these principles. What can be done to uphold these principles at the smallest possible cost?

The Growth of the Service

A test or pilot service generally begins with one or two servers, and when it begins to grow, the number of servers will increase accordingly. Content renewal must be meticulously carried out one server at a time. It may be a laborious task, but it is not an impossible one as of yet.

As the service begins to expand with more users and more accumulated data, managing each server one by one becomes even more difficult. At this point, high-cost storage (e.g. NAS, SAN, DAS) is introduced to collect all the data in one system. Expensive but reliable storage systems make content renewal easier, because servers can automatically acquire updated content from storage.

However, as the service sharply grows, the number of servers increases. More servers mean more data from storage, leading to data transfer overload. A new storage system that supports higher bandwidth can be even more expensive, so it’s questionable if one would want to invest in it.

A potential solution to the problem is synchronization. Getting all the data ready is impractical, so the storage system must be able to sort the content. Management is essential to achieve precise content control. Synchronization across a few servers may be easy, but the more servers and files to sync, the harder it becomes. Synchronization can become slower, harder, and even more unstable as the system expands.

Moreover, content is constantly changing. The more files there are to add or delete, the longer the synchronization time becomes. A larger-scale service inevitably requires a bigger and more complicated synchronization managing system. Any problems in the management system may eventually lead to total service failure.

A simpler method to quickly and flexibly deliver content to servers is necessary.

Service Scalability and Content Delivery

As shown in the figure below, a service can be broken down into two layers.

[image: ../_images/intro_2layers.png]

In the center is the storage layer, which manages data. Above it is the application layer, which implements the service logic and can also process content delivery for a small number of customers. In the beginning stages, the service can be set up with only the storage and application layers.

[image: ../_images/intro_graph_1.png]

As the service grows, the total cost will change. In the beginning stages, the biggest expense is in logic development, while in the growth stages, the biggest expense is in data management in accordance with the number of users. However, as the service matures, the main concern becomes content delivery, making it a huge hurdle for service expansion. How can the exploding bandwidth be taken care of?

The Edge: The Delivery Layer

[image: ../_images/intro_3layers.png]

When the service reaches maturity, the burden of content delivery will increase exponentially. Shopping mall content numbers in the billions, and the video service content has long since begun to use terabytes. To expand a service, the scalability of content delivery must definitely be taken into account.

The edge layer is the outermost layer of the service in which clients will be able to experience speed and availability. No matter the circumstances, the content requested by the users must always be delivered to them. Broken images or unavailable pages on the user’s screen is fatal to the reputation of the service. By handling content delivery via the edge, there is less of a burden on the application and storage layers.

Having an easily and efficiently expandable edge layer removes the need to expand other high-cost layers. Meanwhile, expanding the storage layer or the application layer is a poor choice due to its high cost and low efficiency.

In that case, how does the STON Edge Server make content delivery quicker and easier?

The Behavior of the Edge Server: Caching

[image: ../_images/intro_cache1.png]

The scale of data delivery is proportional to the number of users and the size of content. The service can detect how many users are requesting what content most quickly within the edge layer. Because the bottom-up workflow from edge layer is the most efficient, the edge server implements caching behavior that responds on demand to the users’ requests, without any need for management systems. The procedure is as follows.

[image: ../_images/intro_cache2.png]

When the edge server receives its first content delivery request, it obtains the content from the storage layer and then transfers the content to the user. This transferred content is also saved in the edge server itself. On future requests, the saved content can immediately be delivered to the users from the edge server itself. The saved content will only be available during the preset Time To Live (TTL) period.

In this way, the edge server can handle a considerable amount of content. It can allow for quick mass distribution of data while minimizing the need to expand the application and storage layers. Any growing service should take the edge server into consideration.

The STON Edge Server is software that aims to provide an unrestricted and unconditional environment. The server is designed to provide maximum performance on any type of hardware platform.

CPU: Optimized for multi-core processors. Throughput is proportional to the number of CPU cores.

Memory: Larger memory allows for faster processing and cuts down on Disk I/O.

Disk: I/O is evenly distributed to cache more data.

NIC: Guaranteed bandwidth of either 4 Gbps NIC Bonding or 10 Gbps NIC.

The STON Edge Server supports powerful live monitoring and logging. The administrator can check the current service status in real time with statistics updated every second. The real-time statistics are offered in universal formats such as JSON, XML, and SNMP.

STON offers simple installation for the sake of administrators, because STON’s design principle is to be an edge server made with administrators in mind. An intuitive installation method is provided via the Web Management page. More detailed settings can be configured by editing only two XML files.

Benefits of the Edge Server

The benefits of the edge server are listed below.

	Provides simple and convenient service acceleration

	Shields the service origin from external access (Origin Shielding)

	Allows the other layers to concentrate on their fundamental roles

The advantages of adopting the edge server can be seen in the following application examples.

Gaming

Gaming services require a large amount of bandwidth. There are a variety of categories in gaming, from “masterpiece” games to casual games. Smartphone games have become especially popular, further diversifying the forms of services.

[image: ../_images/icons_game.png]

	High Bandwidth Throughput

A universal method to acquire high bandwidth with a single server is bonding 1 Gbps NIC (Network Interface Controller). With this, up to 4 Gbps can be achieved. Recently, 10Gbps NICs have also become common.

STON guarantees full bandwidth for both 4 Gbps NIC Bonding and 10 Gbps NIC.

	Max User Bandwidth Guaranteed

Everyone wants to play games as soon as possible, so they will want to download their games as fast as possible. Users with fiber optic LAN may complain if their speed falls under 100 Mbps. As long as a server’s bandwidth isn’t physically exceeded, it must be able to guarantee maximum speed equally to every user.

STON guarantees maximum transmission speed to all users.

	Processing Large Files

Nowadays, a game with a file size of about 4 GB can’t even be considered a large game; there exist games with dozens of GB in file size. If the files are too large to cache in the server memory, critical service failure is likely. The worst-case scenario is when every user is each downloading a different part of a massive file from the server.

STON caching has no limit to file size, and will always guarantee high performance by swapping between memory and disk when appropriate.

	Processing Range Requests

As files to deliver are growing larger, the P2P solution, based on the grid delivery method, has become widely used. This solution shreds a single file into small pieces to send or receive, thus making a huge number of HTTP range requests from the server. Theoretically, ten thousand clients can all request different ranges from a 10 GB file. The service must be able to respond immediately, regardless of what is being requested. However, the size of the transferred data must not exceed the size of the original file.

STON is loaded with a file system that is optimized for range requests. STON also guarantees faster responses via multi-download. It will not download a single unnecessary byte from the origin server.

E-commerce

In the case of online shopping malls, accessibility of the website is directly related to the amount of total sales. Recently, mobile shopping via smartphones has become just as common as the traditional PC-based online shopping. A service will face difficulty if it cannot handle not just various shopping environments but also an infinitely growing number of files.

[image: ../_images/icons_shopping.png]

	Numerous Small Files

An expensive storage system is necessary when it comes to storing files that seem like they’re constantly increasing. However, because being economical is important to the edge server, this solution is not preferred. There could be a service that consists of a billion 1 KB files, and caching all of them is not possible. Therefore, a method that keeps hold of frequently requested files while minimizing load on the origin server is necessary.

STON uses available memory and disk resources to their greatest capacity for caching. It manages the access frequency of all files in real time and removes older files based on the LRU (Least Recently Used) algorithm.

	Millions of Users

An online shopping mall must be able to handle the requests of multiple users at once. There are times when bursts of website traffic can occur due to a sudden event. Servers must be able to withstand these bursts and remain stable after them.

STON guarantees CPU scalability, with performance proportional to the number of resources. It can guarantee stability even during bursts using flexible HTTP keep-alive and socket handling.

	Responsiveness

Pleasant online shopping experiences occur when pages load quickly and the customers don’t have to wait. If a page doesn’t load within three seconds, the user will most often move to a different site. Even though the main page is generally made up of about a hundred files, it must still load perfectly in a second.

STON guarantees swift responses through real-time file indexing. Responsiveness is maximized by having seamless file replacement with no dependence on the origin server. Logs and statistics are offered for all HTTP responses (Time to First Byte, transaction completions) to detect declines in performance in real time.

	Page TTL

The majority of users follow a route that goes from the main page, to the upper category page, to the lower category page, and then to the product details page. Each page must be different not just in their exposure frequencies but also in their refresh cycles. A smart method of caching and refreshing is necessary.

STON can allocate separate TTLs to each URL. It also offers various refreshing methods such as Purge, Expire, ExpireAfter, and HardPurge to be used to fit the given situation.

Media

Exclusive media protocols are starting to lose their place, while the simple but powerful combination of HTTP and MP4 is gaining influence. Taking into consideration the variable connection statuses of mobile devices, HTTP-based streaming is likely to become the norm.

[image: ../_images/icons_media.png]

	Media Recognition

Media files should no longer be seen as just one huge chunk of file. Bandwidth can be reduced and various additional functions can be linked only when the format of the media file is correctly recognized. If the server requires the entire file to determine its format, then during the time the server takes to acquire the file, the user will most likely quit waiting.

STON supports the MP4, MP3, M4A, and FLV formats. As soon as the server starts downloading a media file, it prioritizes the sections required for HTTP pseudo-streaming.

	Media Header Reordering

If the header is located at the end of the file, HTTP pseudo-streaming is unavailable. An exclusive media player would be necessary for these types of files, but this can make users easily frustrated.

If the header is placed at the end after encoding an MP4 file, an additional action to move it to the front is necessary. STON provides the service of automatically moving the header to the front.

	Adjustable Bandwidth

Not many users watch the entire video clip to the end. Therefore, an efficient streaming method would be to use only smallest amount of bandwidth necessary for smooth playback. Though the video may be the same, it can be watched in varying bitrates ranging from 360p to 1080p.

STON uses bandwidth throttling to optimize the bandwidth used during media file delivery.

	Multi/Single Part Trimming

Some preview/highlight/sharing services provide only a specific part of the file instead of the whole. It would be a waste of time and storage space to extract parts for every file. Furthermore, there are cases where the extracted part may be different for each user. Some media players also implement a skip function for segment playback.

STON can trim a media file to extract parts that can be used as complete files themselves.

News / Forums

There are many points of interest for sites that have secured a large loyal user base. As these websites are where people of similar interests gather, users will stay on pages for long periods of time and exchanges will occur with vigor. The service patterns of these sites vary by their subjects and it is tricky to meet their service requirements.

[image: ../_images/icons_news.png]

	304 Not Modified

Because these users are loyal to the website, most files will already be cached in local storage. Therefore, checking for updates will be more frequent than actual file transfer.

STON ensures that frequently accessed files are always kept in memory. Checking for updates can be processed immediately without waiting.

	Bypass

There are a certain category of pages that cannot be cached, such as user-specific pages or pages with new posts or replies. Even in these cases, a single domain is usually delegated to a reverse proxy instead of separating it into multiple domains.

STON elaborately classifies bypass targets based on various conditions. The server also maintains login sessions using the Origin Affinity and Private functions.

	Origin Shield

Websites owned by individuals or small or mid-size businesses cannot afford expensive equipment, infrastructure, or labor force. Server failure can occur relatively frequently, and it is often uneconomical to try and improve server quality.

STON will detect server overload or failure and automatically execute exclusion/recovery of the origin server. It will also extend TTL upon server failure and minimize dependence on the origin server.

	Image Processing

The same image may need to be displayed in different ways depending on the user environment. Search results may display images as thumbnails, while news sites may watermark their images. Processing every image into a specific format is a waste of time, storage, and effort.

STON‘s DIMS function can generate desired image formats from a single image using only URL calls.

File-based Server

The edge server is based on the reverse proxy structure. The fundamental concept of the reverse proxy is to copy/modify/manage files from the remote server to local storage. If STON can integrate with a service’s server, it can resolve both storage centralization and synchronization issues. This will also decrease service development time and improve service reliability, killing two birds with one stone.

[image: ../_images/icons_file.png]

	File I/O Support

If an exclusive protocol is required, the server becomes subordinate to the corresponding module. Even the module was integrated with the server, if performance falls, it is dead weight. The stage between the module and the server must be reduced to a minimum.

STON can adopt standard file I/O. Only a Linux Kernel (VFS) is placed between STON and the exclusive server to guarantee high performance.

	Web Server Integration

Standard reverse proxies may be hard to implement if any special expansion modules are installed on standard web servers (Apache, Lighttpd, NginX). For example, it is hard for a file service or a payment service linked with DB/WAS to expand.

If Apache’s DocumentRoot is assigned to STON, Apache will recognize STON as a physical disk and nothing will need to be configured.

	Wowza Integration

Wowza is considered to be a standard in the media service field. However, Wowza’s HTTP caching function is not just inconvenient but also limited. In addition, other “exclusive”; protocols besides HTTP are fading away from the market.

STON can be mounted as a local disk. Moreover, all functions, such as MP4 header conversion and trimming, are available.

	Resource Management

A server that acquires back-end files and delivers them to front-end users will always have problems with file synchronization. Exclusive servers such as game or SNS servers have always had these issues during development. Because these servers must stay running for long periods of time without interruption, memory and disk use must be strictly controlled.

STON can easily control memory and disk use. Even when STON is mounted on a disk, all other functions will work in the same manner, so complicated services can be configured with a minimal solution.

The following Korean services are actively making use of the above attributes to grow with STON.

[image: ../_images/intro_reference.png]

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STON Edge Server 2.3.4 documentation

Chapter 2. Getting Started

This chapter will cover the installation and configuration of the system as well as how to set up a sample virtual host. A simple text editor is all that is necessary.

STON was developed to run on standard Linux servers, and minimize dependence on the hardware, OS, or file system, among others. However, it is still important to choose the most suitable equipment for the job, in order to set up the server to match the service’s individual qualities.

Setting Up the Server

Generally, setting up a server means considering the CPU, memory, and disk. For example, if a service requires high performance on the level of 10 Gbps throughput, then each component must meet the requirements to reach the desired performance.

	
	CPU

	A CPU with at least four cores (quad-core) is recommended. Because STON gains scalability when it comes to multi-core CPUs, the per-second throughput increases with more cores. However, higher throughput does not necessarily mean higher traffic.

[image: ../_images/10g_cpu.jpg]
The more clients there are, the more useful it is to have many CPUs.

Transferring a 4 KB file around 260,000 times takes the same amount of bandwidth as transferring a 1 GB file once. The most important criterion in choosing a CPU is the number of parallel connections the service must make.

	
	Memory

	At least 4GB of memory is recommended to be used in memory indexing (see also Memory Structure). Content that is frequently accessed will always be stored in memory, but content that is not will have to be loaded from disk. As such, if there is a lot of content with a large spread (a long-tailed distribution), then the load on the disk will be higher and performance may decline. If disk I/O load is high because of the size of the content, regardless of the amount of content, then memory can simply be added to decrease the load.

	
	Disk

	At least three disks, including the OS, is recommended. As one would expect, more disks lead to better performance, as I/O load will be dispersed and more content can be cached.

[image: ../_images/02_disk.png]
The OS and STON will always be installed on a disk separate from the content.

In general, STON will be installed on the same disk as the OS. The log is also generally installed on the same disk. Because the log must record the service status in real time, it will always create write load.

The STON disks will be used in the RAID 0 setting. The correlation between performance and RAID changes depending on the client service’s qualities. However, if file changes are infrequent and content size is much larger than physical memory, increasing read speed with RAID may be effective.

Setting Up the OS

In its most basic form, STON will operate normally on standard 64-bit Linux distributions (CentOS 6.2 or higher, Ubuntu 10.04 or higher), and does not require any particular package.

Installation

	Download the latest version of STON.

[root@localhost ~]# wget http://foobar.com/ston/ston.2.0.0.rhel.2.6.32.x64.tar.gz
--2014-06-17 13:29:14-- http://foobar.com/ston/ston.2.0.0.rhel.2.6.32.x64.tar.gz
Resolving foobar.com... 192.168.0.14
Connecting to foobar.com|192.168.0.14|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 71340645 (68M) [application/x-gzip]
Saving to: “ston.2.0.0.rhel.2.6.32.x64.tar.gz”

100%[===>] 71,340,645 42.9M/s in 1.6s

2014-06-17 13:29:15 (42.9 MB/s) - “ston.2.0.0.rhel.2.6.32.x64.tar.gz” saved [71340645/71340645]

	Extract the downloaded package.

[root@localhost ~]# tar -zxf ston.2.0.0.rhel.2.6.32.x64.tar.gz

	Run the installation script.

[root@localhost ~]# ./ston.2.0.0.rhel.2.6.32.x64.sh

	All installation processes are recorded in the install.log file. Any problems that occur during the installation process will be noted there.

#DownloadURL: http://foobar.com/ston/ston.2.0.0.rhel.2.6.32.x64.tar.gz
#DownloadTime: 13 sec
#Target: STON 2.0.0
#Date: 2014.03.03 16:48:35
Prepare for STON 2.0.0 install process
 Stopping STON...
 STON stopped
[Copying files]
 `./fuse.conf' -> `/etc/fuse.conf'
 `./libfuse.so.2' -> `/usr/local/ston/libfuse.so.2'
 `./libtbbmalloc_proxy.so' -> `/usr/local/ston/libtbbmalloc_proxy.so'
 `./start-stop-daemon' -> `/usr/sbin/start-stop-daemon'
 `./libtbbmalloc_proxy.so.2' -> `/usr/local/ston/libtbbmalloc_proxy.so.2'
 `./libtbbmalloc.so' -> `/usr/local/ston/libtbbmalloc.so'
 `./libtbbmalloc.so.2' -> `/usr/local/ston/libtbbmalloc.so.2'
 `./libtbb.so' -> `/usr/local/ston/libtbb.so'
 `./libtbb.so.2' -> `/usr/local/ston/libtbb.so.2'
 `./stond' -> `/usr/local/ston/stond'
 `./stonx' -> `/usr/local/ston/stonx'
 `./stonr' -> `/usr/local/ston/stonr'
 `./stonu' -> `/usr/local/ston/stonu'
 `./stonapi' -> `/usr/local/ston/stonapi'
 `./server.xml.default' -> `/usr/local/ston/server.xml.default'
 `./vhosts.xml.default' -> `/usr/local/ston/vhosts.xml.default'
 `./ston_format.sh' -> `/usr/local/ston/ston_format.sh'
 `./ston_diskinfo.sh' -> `/usr/local/ston/ston_diskinfo.sh'
 `./wm.sh' -> `/usr/local/ston/wm.sh'
[Exporting config files]
 #Export so directory
 /usr/local/ston/ to ld.so.conf
 #Export sysctl to /etc/sysctl.conf
 vm.swappiness=0
 vm.min_free_kbytes=524288
 #Export sudoers for WM
 Defaults !requiretty
 winesoft ALL=NOPASSWD: /etc/init.d/ston stop, /etc/init.d/ston start, /bin/ps -ef
[Configuring STON daemon script]
 STON deamon activate in run-level 2345.
[Installing sub-packages]
 curl installed.
 libjpeg installed.
 libgomp installed.
 rrdtool installed.
[Installing WM]
 Stopping WM...
 WM stopped
 `./wm.server_default.xml' -> `/usr/local/ston/wm/tmp/conf/server_default.xml'
 `./wm.vhost_default.xml' -> `/usr/local/ston/wm/tmp/conf/vhost_default.xml'
 WM configuration found. Current WM port : 8500
 PHP module for Legacy(CentOS 5.5) installed
 `./libphp5.so.5.5' -> `/usr/local/ston/wm/modules/libphp5.so'
 WM installation almost complete. Changing WM privileges.
Installation successfully complete

Obtaining a License

New clients can obtain a license via this process.

	Fill out the application form [http://ston.winesoft.co.kr/EULR.doc].

	Email the completed form to license@winesoft.co.kr.

	The license will be issued after confirmation.

The license file (license.xml) must be in the installation directory for STON to run properly.

Update

Use the “stonu” command to update STON to the latest version.

./stonu 2.0.1

See also Update to Latest Version from Chapter 13. WM (Web Management) to easily update STON.

[image: ../_images/conf_update1.png]

Run

STON will be installed in the following default directory.

/usr/local/ston/

If any of the following files is missing or has invalid XML syntax, STON will not run.

	license.xml

	server.xml

	vhosts.xml

After the initial installation, not every XML file will be present. In this case, the distributed license.xml file should be placed in the directory. The server.xml.default and vhosts.xml.default files should also be placed in the directory. The *.default files are always included in the latest package.

Hello World

Open vhosts.xml and edit with the following code.

<Vhosts>
 <Vhost Name="www.example.com">
 <Origin>
 <Address>hello.winesoft.co.kr</Address>
 </Origin>
 </Vhost>
</Vhosts>

Running STON

	Copy license.xml to the installation directory.

	Open server.xml and configure <Storage>.

<Server>
 <Cache>
 <Storage>
 <Disk>/cache1/</Disk>
 <Disk>/cache2/</Disk>
 </Storage>
 </Cache>
</Server>

Note

STON normally uses disk storage. A disk must be configured in order to run STON. Disk set-up details can be found in the next chapter.

	Run STON.

[root@localhost ~]# service ston start

To stop STON, use the “stop” command.

[root@localhost ~]# service ston stop

Checking the Virtual Host

(For Windows 7) Add www.example.com in the C:\Windows\System32\drivers\etc\hosts file as shown below.

192.168.0.100 www.example.com

If all settings are correctly configured, the following page will be displayed on the browser when www.example.com is accessed.

[image: ../_images/helloworld3.png]

If WM is Slow or the Graph Isn’t Displayed

RRDtool is dynamically downloaded and installed during installation, and may not be installed properly under a restricted network. Moreover, Chapter 13. WM (Web Management) may run very slowly or Appendix A: Graph may not work at all. To fix these issues, follow the steps below.

	Check Installation Status

Checking the installation status of RRDtool can be done as follows.

[root@localhost ston]# yum install rrdtool
Loaded plugins: fastestmirror, security
Loading mirror speeds from cached hostfile
* base: centos.mirror.cdnetworks.com
* elrepo: ftp.ne.jp
* epel: mirror.premi.st
* extras: centos.mirror.cdnetworks.com
* updates: centos.mirror.cdnetworks.com
Setting up Install Process
Package rrdtool-1.3.8-6.el6.x86_64 already installed and latest version
Nothing to do

(For Ubuntu)

root@ubuntu:~# apt-get install rrdtool
Reading package lists... Done
Building dependency tree
Reading state information... Done
rrdtool is already the newest version.
The following packages were automatically installed and are no longer required:
 libgraphicsmagick3 libgraphicsmagick++3 libgraphicsmagick1-dev libgraphics-magick-perl libgraphicsmagick++1-dev
Use 'apt-get autoremove' to remove them.
0 upgraded, 0 newly installed, 0 to remove and 102 not upgraded.

	RRD Manual Install

If yum is unable to install RRDtool, the administrator should download [http://pkgs.repoforge.org/rrdtool/] the right package for the OS and proceed with manual installation.

	Name
	Last Modified
	Size
	Description

	tcl-rrdtool-1.4.7-1.el5.rf.i386.rpm
	06-Apr-2012 16:57
	36K
	RHEL5 and CentOS-5 x86 32bit

	tcl-rrdtool-1.4.7-1.el5.rf.x86_64.rpm
	06-Apr-2012 16:57
	37K
	RHEL5 and CentOS-5 x86 64bit

	tcl-rrdtool-1.4.7-1.el6.rfx.i686.rpm
	06-Apr-2012 16:57
	35K
	RHEL6 and CentOS-6 x86 32bit

	tcl-rrdtool-1.4.7-1.el6.rfx.x86_64.rpm
	06-Apr-2012 16:57
	35K
	RHEL6 and CentOS-6 x86 64bit

Origin Server

The purpose of the virtual host is to provide content in place of the origin server. Various types of origin servers can be accessed in various ways, depending on what is most suitable for the service platform.

<Vhosts>
 <Vhost Name="www.example.com">
 <Origin>
 <Address>1.1.1.1</Address>
 <Address>1.1.1.2</Address>
 </Origin>
 </Vhost>
</Vhosts>

	<Address>

The address of the origin server from which the virtual host will copy content. There is no limit to the number of addresses that can be added. If there are more than two addresses, selection follows the active/active model (round-robin). If the origin server port is 80, it can be omitted.

For example, if the origin server is using a different port such as 8080, then the port number must be specified as 1.1.1.1:8080. There are eight different ways to format addresses using the {IP|Domain}{Port}{Path} format.

	Address
	Host Header

	1.1.1.1
	Virtual host name

	1.1.1.1:8080
	Virtual host name:8080

	1.1.1.1/account/dir
	Virtual host name

	1.1.1.1:8080/account/dir
	Virtual host name:8080

	example.com
	example.com

	example.com:8080
	example.com:8080

	example.com/account/dir
	example.com

	example.com:8080/account/dir
	example.com:8080

As long as the host header is not specified in the Origin Request Default Header, the host header from the table above will be transmitted.:

<Vhosts>
 <Vhost Name="www.example.com">
 <Origin>
 <Address>origin.com:8888/account/dir</Address>
 </Origin>
 </Vhost>
</Vhosts>

For example, the above configuration will request the following to the origin server.

GET / HTTP/1.1
Host: origin.com:8888

Note

If a path is added to the origin server’s address (e.g. example.com/account/dir), then the requested URL will be placed after the path. If a client requests /img.jpg, the resulting address becomes example.com/account/dir/img.jpg.

Standby Origin Server Address

The standby origin server can be configured as follows.:

<Vhosts>
 <Vhost Name="www.example.com">
 <Origin>
 <Address>1.1.1.1</Address>
 <Address>1.1.1.2</Address>
 <Address2>1.1.1.3</Address2>
 <Address2>1.1.1.4</Address2>
 </Origin>
 </Vhost>
</Vhosts>

	<Address2>

If all <Address> es are working without problems, <Address2> will not be used. However, if any failures are detected in the active servers, a standby server will be used as a replacement until the failed server recovers. If a failure occurs in a standby server, the server will never be used until it can recover.

API Call

STON provides HTTP-based API. API calls are authorized by Administrator Settings. If a call is unauthorized, the connection will be terminated immediately.

The STON version can be checked as follows.

http://127.0.0.1:10040/version

The same API can be called with Linux shell commands.

./stonapi version

Note

The ampersand (&) is recognized as a delimiter for QueryStrings in the HTTP API, but it means something different in a Linux console. When running commands or using arguments that contain &s, you must wrap the string in quotes (“/...&...”).

Hardware Status

The following will look up hardware information.

http://127.0.0.1:10040/monitoring/hwinfo

The results are returned in JSON format.

{
 "version": "1.1.9",
 "method": "hwinfo",
 "status": "OK",
 "result":
 {
 "OS" : "Linux version 3.3.0 ...(omitted)...",
 "STON" : "1.1.9",
 "CPU" :
 {
 "ProcCount": "4",
 "Model": "Intel(R) Xeon(R) CPU E5606 @ 2.13GHz",
 "MHz": "1200.000",
 "Cache": "8192 KB"
 },
 "Memory" : "8 GB",
 "NIC" :
 [
 {
 "Dev" : "eth1",
 "Model" : "Intel Corporation 82574L Gigabit Network Connection",
 "IP" : "192.168.0.13",
 "MAC" : "00:25:90:36:f4:cb"
 }
],
 "Disk" :
 [
 {
 "Dev" : "sda",
 "Model" : "HP DG0146FAMWL (scsi)",
 "Total" : "238787584",
 "Usage" : "40181760"
 },
 {
 "Dev" : "sdb",
 "Model" : "HITACHI HUC103014CSS600 (scsi)",
 "Total" : "144706478080",
 "Usage" : "2101075968"
 },
 {
 "Dev" : "sdc",
 "Model" : "HITACHI HUC103014CSS600 (scsi)",
 "Total" : "144706478080",
 "Usage" : "2012160000"
 }
]
 }
}

Restart/Quit

The following commands restart or quit STON. To avoid unintended results, STON asks for confirmation for restart/quit commands on the web page.

http://127.0.0.1:10040/command/restart
http://127.0.0.1:10040/command/restart?key=JUSTDOIT // Immediately executes command
http://127.0.0.1:10040/command/terminate
http://127.0.0.1:10040/command/terminate?key=JUSTDOIT // Immediately executes command

Caching Reset

The following commands stop the service and discard all cached content. The commands will format all disks and resume the service when completed.

http://127.0.0.1:10040/command/cacheclear
http://127.0.0.1:10040/command/cacheclear?key=JUSTDOIT // Immediately executes command

In the console window, the following commands will reset all or one of the virtual hosts.

./stonapi reset
./stonapi reset/ston.winesoft.co.kr

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STON Edge Server 2.3.4 documentation

Chapter 3. Configuration

This chapter will explain the configuration structure of the STON Edge Server and how to apply the settings. Understanding the configuration structure is important in not only setting up the server quickly but also troubleshooting any problems that occur.

Configuration consists of global (server.xml) and virtual host (vhosts.xml) configuration.

[image: ../_images/conf_files.png]
Two XML files are all that is needed.

The two XML files are what comprise most of the service. Various TXT files are used for exception handling for each virtual host and for listing certain functions. The following illustrates the complete form of the XML.

<Server>
 <VHostDefault>
 <Options>
 <CaseSensitive>ON</CaseSensitive>
 </Options>
 </VHostDefault>
</Server>

However, explaining functions using this format is rather inconvenient, so it will instead be explained in this simplified format.

server.xml - <Server><VHostDefault><Options>

<CaseSensitive>ON</CaseSensitive>

Note

The license file (license.xml) is not a configuration file.

Reload Settings

After changing the settings, the administrator must make a call to the API. Aside from system or performance settings, most settings will immediately be applied without interrupting the service.

http://127.0.0.1:10040/conf/reload

Any changes from settings will be recorded in the Info Log.

Global Settings (server.xml)

The server.xml file is the global settings file and can be found in the same path as the execution file. It is an XML format text file.

server.xml

<Server>
 <Host> ... </Host>
 <Cache> ... </Cache>
 <VHostDefault> ... </VHostDefault>
</Server>

We will first cover the configuration structure and basic functions. While Chapter 14. Access Control and Chapter 11. SNMP are also part of global settings, they will be explained in their respective chapters.

Administrator Settings

The following configures the administrator settings of the system.

server.xml - <Server>

<Host>
 <Name>stream_07</Name>
 <Admin>admin@example.com</Admin>
 <Manager Port="10040" HttpMethod="ON" Role="Admin" UploadMultipartName="confile">
 <Allow>192.168.1.1</Allow>
 <Allow Role="Admin">192.168.2.1-255</Allow>
 <Allow Role="User">192.168.3.0/24</Allow>
 <Allow Role="Looker">192.168.4.0/255.255.255.0</Allow>
 </Manager>
</Host>

	
	<Name>

	This configures the server name. If left blank, it will use the system name.

	
	<Admin>

	This configures the administrator’s information (name or email address). This item is only used for the SNMP inquiry.

	
	<Manager>

	This configures the manager port and the ACL (Access Control List) for administrative purposes. The ACL supports the four forms of IP, IP range, BitMask, and Subnet. If the IP address of the connected session is not authorized by the <Allow> list, the server will block the connection. An IP that calls an API must be configured in the <Allow> list.

After the access conditions, the access authorization (Role) can also be configured. Any requests without authorization will be responded to with a 401 Unauthorized message. If Role properties are not declared in <Allow> conditions, the Role property from the <Manager> tag will be applied.

	Admin All API calls are allowed.

	User Only Chapter 10. Monitoring & Statistics and Appendix A: Graph API calls are allowed.

	Looker Only Appendix A: Graph API calls are allowed.

In addition, there are other minor administrative properties.

	HttpMethod
	ON (default) HTTP Method will check ACL when called.

	OFF HTTP Method will not check ACL when called.

	UploadMultipartName Configures variable names in Configuration Upload.

Storage Settings

This section will explain the setup of storage that will store cached content.

server.xml - <Server>

<Cache>
 <Storage DiskFailSec="60" DiskFailCount="10" OnCrash="hang">
 <Disk>/user/cache1</Disk>
 <Disk>/user/cache2</Disk>
 <Disk Quota="100">/user/cache3</Disk>
 </Storage>
</Cache>

	
	<Storage>

	This configures the disk that will store the content. There is no limit to the number of subordinate <Disk> s.

Because the disk is where problems are most likely to happen, it is recommended to set specific fail conditions. If a disk operation fails more than DiskFailCount (default: 10) times within DiskFailSec (default: 60) seconds, then that disk will be excluded from the service. The status of that disk will be shown as “invalid”.

If all disks are excluded, then the server will operate according to the OnCrash property.

	hang (default) Will put all the excluded disks back to work. This behavior is more likely to protect the origin server rather than return to normal service.

	bypass All requests will be passed to the origin server. If the disk recovers, STON will start taking care of the service as soon as it can.

	selfkill STON will be shut down.

The maximum caching capacity for each disk can be configured with the Quota (unit: GB) property. Even when not specifically configured, the LRU (Least Recently Used) algorithm is used to automatically delete old content to ensure that there is always space on the disk. Therefore, there is no large effect on performance regardless of the file system the administrator chooses to use.

Memory Restriction

This configures the maximum available memory and the ratio of loaded content.

server.xml - <Server>

<Cache>
 <SystemMemoryRatio>100</SystemMemoryRatio>
 <ContentMemoryRatio>50</ContentMemoryRatio>
</Cache>

	
	<SystemMemoryRatio> (default: 100%)

	This ratio will configure the maximum amount of system memory that STON will use. For example, if this property is set to 50% with 16 GB of memory, the system will operate as if there were only 8 GB of memory. This option is especially useful when used together with other processes such as Chapter 17 File System.

	
	<ContentMemoryRatio> (default: 50%)

	STON improves service quality by caching as much of the Body data as possible from disk to memory. This ratio can be adjusted to optimize the quality of the service according to its type.

[image: ../_images/bodyratio1.png]
The ratio of memory is configured using the ContentMemoryRatio property.

Using the gaming example, if there are not many files but there is a lot of content, it places a burden on File I/O. In this case, raising the <ContentMemoryRatio> value allows more data to reside in memory, thus improving service quality.

[image: ../_images/bodyratio2.png]
If ContentMemoryRatio is raised, I/O load decreases.

Other Caching Settings

This section covers other caching service functions.

server.xml - <Server>

<Cache>
 <Cleanup>
 <Time>02:00</Time>
 <Age>0</Age>
 </Cleanup>
 <Listen>0.0.0.0</Listen>
 <ConfigHistory>30</ConfigHistory>
</Cache>

	
	<Cleanup>

	The server carries out system optimization once a day. The optimization procedure mainly consists of disk cleanup, which creates I/O load. In order to prevent a drop in service quality, optimization is performed gradually.

	<Time> (default: 2 AM) Configures when cleanup is performed. A 24-hour clock is used, so for example, 11:10 PM should be written as 23:10.

	<Age> (default: 0, unit: days) If set to a value greater than zero, content that has not been accessed in the specified amount of time will be deleted. This is for the sake of securing available space on the disk in advance to lower the possibility that there will not be enough space during service time.

	
	<Listen>

	Assigns a list of IP addresses for all virtual hosts to listen to. The default Listen setting of *:80 for all virtual hosts stands for 0.0.0.0:80. The following is an example of enabling specific IP addresses.

server.xml - <Server>

<Cache>
 <Listen>10.10.10.10</Listen>
 <Listen>10.10.10.11</Listen>
 <Listen>127.0.0.2</Listen>
</Cache>

	
	<ConfigHistory> (default: 30 days)

	STON backs up the configuration settings when changes are made. The configuration files will be compressed into one file and saved at ./conf/. The file will be named in a “DATE_TIME_HASH.tgz” format, as follows.

20130910_174843_D62CA26F16FE7C66F81D215D8C52266AB70AA5C8.tgz

If two files have identical hash values, it means they have identical settings. Even if Restore Configuration is called, it will be saved as a new configuration. A backup file will only be stored for the set amount of time after Cleanup is performed. There is no limit to the amount of time that backups can be stored.

Forced Cleanup

Cleanup is executed with an API call. An <Age> parameter can be attached.

http://127.0.0.1:10040/command/cleanup
http://127.0.0.1:10040/command/cleanup?age=10

If <Age> is zero, cleanup will be performed only when there is insufficient disk space. If <Age> is greater than 0, then content that has not been accessed for that amount of days will be deleted.

Virtual Host Default Settings

Administrators can configure each virtual host with different settings. However, it can be exhausting to set identical settings for new virtual hosts. All virtual hosts will inherit <VHostDefault> .

[image: ../_images/vhostdefault.png]
A simple inheritance.

In the figure above, www.example.com does not override any value and thus has the values A=1 and B=2. Meanwhile, img.example.com has overridden the value of B and thus has the values A=1 and B=3. Administrators will normally keep services with similar attributes on the same server, making inheritance extremely effective.

<VHostDefault> consists of five function-based subordinate tags.

server.xml - <Server>

<VHostDefault>
 <Options> ... </Options>
 <OriginOptions> ... </OriginOptions>
 <Media> ... </Media>
 <Stats> ... </Stats>
 <Log> ... </Log>
</VHostDefault>

For example, the function for Chapter 16. Media is configured in the <Media> tag.

Virtual Host Settings (vhosts.xml)

The vhosts.xml file is recognized as the virtual host settings file and can be found in the same path as the execution file. There is no limit to the amount of virtual hosts that are allowed.

vhosts.xml

<Vhosts>
 <Vhost Status="Active" Name="www.example.com"> ... </Vhost>
 <Vhost Status="Active" Name="img.example.com"> ... </Vhost>
 <Vhost Status="Active" Name="vod.example.com"> ... </Vhost>
</Vhosts>

Create/Remove Virtual Host

Virtual hosts are set up with the <Vhost> tag within the <Vhosts> tag.

vhosts.xml - <Vhosts>

<Vhost Status="Active" Name="www.example.com">
 <Origin>
 <Address>10.10.10.10</Address>
 </Origin>
</Vhost>

	<Vhost> configures the virtual host.
	Status (default: Active) An inactive status means the virtual host does not run. Cached content is still stored.

	Name The name of the virtual host. Identical names cannot be used.

If a <Vhost> tag is erased then the corresponding virtual host is deleted, along with all of its stored content. Even if the virtual host is readded, the deleted content cannot be restored.

Discovering a Virtual Host

The following is the simplest form of an HTTP request.

GET / HTTP/1.1
Host: www.example.com

Most web servers will discover virtual hosts with a Host header. If a virtual host wants to operate under different names, the <Alias> tag can be used.

vhosts.xml - <Vhosts>

<Vhost Name="example.com">
 <Alias>another.com</Alias>
 <Alias>*.sub.example.com</Alias>
</Vhost>

	
	<Alias>

	This option configures the alias of a virtual host. There is no limit to the amount of aliases that can be assigned. Aliases can be assigned using both specific domain names (another.com) or patterned domain names (*.sub.example.com). For patterned domain names, only a simple format with an asterisk as a prefix is supported.

When discovering a virtual host, follow the procedures below.

	Does the Name of the <Vhost> match?

	Does the specific <Alias> match?

	Does the patterned <Alias> match?

Facade Virtual Host

Because <Alias> is just a nickname for the virtual host, it will not provide separate statistics and logs. If you want to use the same virtual host but obtain different Client Statistics and Access Log depending on the domain, a Facade Virtual Host can be configured.

vhosts.xml - <Vhosts>

<Vhost Name="example.com">
 ...
</Vhost>

<Vhost Name="another.com" Status="facade:example.com">
 ...
</Vhost>

This can be done by inputting facade: + virtual host into the Status property. In the previous example, the Client Statistics and Access Log will be recorded for clients that request another.com, not example.com.

Sub-Path

A single virtual host can have different sub-paths. These sub-paths can be configured to be handled by separate virtual hosts.

vhosts.xml - <Vhosts>

<Vhost Name="sports.com">
 <Sub Status="Active">
 <Path Vhost="baseball.com">/baseball/<Path>
 <Path Vhost="football.com">/football/<Path>
 <Path Vhost="photo.com">/*.jpg<Path>
 </Sub>
</Vhost>

<Vhost Name="baseball.com" />
<Vhost Name="football.com" />
<Vhost Name="photo.com" />

	If the page path or pattern matches the <Sub> input, then it will be sent to the corresponding virtual host. If they do not match, then the page will be handled by the current virtual host.

	Status (default: Active) Sub-paths are ignored when inactive.

	<Path> If the URI requested by the client and the path match, the request will be sent to Vhost. Only paths or patterns are allowed.

<Path Vhost="baseball.com">baseball<Path>
<Path Vhost="photo.com">*.jpg<Path>

If input as above, they will be parsed as /baseball/ and /*.jpg, respectively.

For example, if the client requests the following, the request will be sent to the football.com virtual host.

GET /football/rank.html HTTP/1.1
Host: sports.com

Default Virtual Host

A default virtual host can be assigned for cases when a virtual host cannot be found for a request. If a default virtual host is not assigned, the request will be abandoned.

vhosts.xml

<Vhosts>
 <Vhost Status="Active" Name="www.example.com"> ... </Vhost>
 <Vhost Status="Active" Name="img.example.com"> ... </Vhost>
 <Default>www.example.com</Default>
</Vhosts>

	
	<Default>

	Configures the name of the default virtual host. It must use a string identical to the Name property from a <Vhost> tag.

Service Address

This section explains how to configure the service address.

vhosts.xml - <Vhosts>

<Vhost Name="www.example.com">
 <Listen>*:80</Listen>
</Vhost>

	
	<Listen> (default: *:80)

	The service address is configured in an {IP}:{Port} format. If written as *:80, for example, then all requests that arrive at port 80 from the NIC will be handled. If a service is supposed to process only requests from a specific address (1.1.1.1) and port (90), then the following setting will do.

vhosts.xml - <Vhosts>

<Vhost Name="www.example.com">
 <Listen>1.1.1.1:90</Listen>
</Vhost>

Note

If you do not wish to open the service port, you can configure with the OFF setting.

vhosts.xml - <Vhosts>

<Vhost Name="www.example.com">
 <Listen>OFF</Listen>
</Vhost>

Virtual Host - Exceptions (.txt)

There are some cases during the service when the following exceptions should be allowed.

	POST requests are not allowed in general, but a POST request from a specific URL should be allowed.

	STON responds to all GET requests in general, but requests from a specific IP band may want to be be be bypassed to the origin server.

	A limit should be placed on transmission speeds for specific countries.

These exceptions are not configured in the XML file; rather, settings are saved as TXT files under the ./svc/virtualhost/ directory. Each virtual host has its own independent exception settings. Exceptions will be explained in more detail in the relevant section.

Checking the Virtual Host List

This command queries the virtual host list.

http://127.0.0.1:10040/monitoring/vhostslist

The result is returned in JSON format.

{
 "version": "1.1.9",
 "method": "vhostslist",
 "status": "OK",
 "result": ["www.example.com","www.foobar.com", "site1.com"]
}

Confirm Configuration

The next step is to confirm the configuration files. Each TXT file must be clearly assigned to a specific virtual host.

http://127.0.0.1:10040/conf/server.xml
http://127.0.0.1:10040/conf/vhosts.xml
http://127.0.0.1:10040/conf/querystring.txt?vhost=www.example.com
http://127.0.0.1:10040/conf/bypass.txt?vhost=www.example.com
http://127.0.0.1:10040/conf/ttl.txt?vhost=www.example.com
http://127.0.0.1:10040/conf/expires.txt?vhost=www.example.com
http://127.0.0.1:10040/conf/acl.txt?vhost=www.example.com
http://127.0.0.1:10040/conf/headers.txt?vhost=www.example.com
http://127.0.0.1:10040/conf/throttling.txt?vhost=www.example.com
http://127.0.0.1:10040/conf/postbody.txt?vhost=www.example.com

Configuration History

The following command allows you to browse backup configuration histories.

http://127.0.0.1:10040/conf/latest
http://127.0.0.1:10040/conf/history

The result is returned in JSON format. Checking only the latest configuration is fastest using /conf/latest.

{
 "history" :
 [
 {
 "id" : "5",
 "conf-date" : "2013-11-06",
 "conf-time" : "15:26:37",
 "type" : "loaded",
 "size" : "16368",
 "hash" : "D62CA26F16FE7C66F81D215D8C52266AB70AA5C8",
 "ver": "1.2.8"
 },
 {
 "id" : "6",
 "conf-date" : "2013-11-07",
 "conf-time" : "07:02:21",
 "type" : "modified",
 "size" : "27544",
 "hash" : "F81D215D8C52266AB70AA5C8D62CA26F16FE7C66",
 "ver": "1.2.8"
 }
]
}

	id The unique identification number (+1 per reload).

	conf-date Configuration modified date.

	conf-time Configuration modified time.

	type When settings take effect.
	loaded When STON is loaded.

	modified When a configuration is modified (by administrator or WM).

	uploaded When a configuration file is uploaded via API.

	restored When a configuration file is restored via API.

	size The size of a configuration file.

	hash The hash value of the configuration file using the SHA-1 algorithm.

Restore Configuration

This command restores the configuration to when a certain hash value or id was created. If both the hash value and id are stated in the command, the hash value takes precedence. If rollback occurs successfully, the result will be “200 OK”, while a failure will result in “500 Internal Error”.

http://127.0.0.1:10040/conf/restore?hash=...
http://127.0.0.1:10040/conf/restore?id=...

Configuration Download

This command will download a configuration of a time when a hash value or id was created. If both the hash value and id are stated in the command, the hash value takes precedence. The Content-Type will be displayed as “application/x-compressed”. If a hash value is not stated and the id cannot be found, the command will return “404 NOT FOUND”.

http://127.0.0.1:10040/conf/download?hash=...
http://127.0.0.1:10040/conf/download?id=...

Configuration Upload

This command will upload the configuration file using the HTTP Post method (Multipart supported).

http://127.0.0.1:10040/conf/upload

The address, Content-Length, and Content-Type (=”multipart/form-data”) must be clearly stated in the command as shown below.

POST /conf/upload
Content-Length: 16455
Content-Type: multipart/form-data; boundary=......

When the upload is completed, the configuration file will be extracted and applied to the system immediately.

In the multipart method, “confile” is used as a default name. This name can be changed in the UploadMultipartName property of the <Manager> tag.

<form enctype="multipart/form-data" action="http://127.0.0.1:10040/conf/upload" method="POST">
 <input name="confile" type="file" />
 <input type="submit" value="Upload" />
</form>

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STON Edge Server 2.3.4 documentation

Chapter 4. Caching Policy

This chapter will cover the Time To Live (TTL), the Caching Key, and the expiration policy, which are fundamental to the service. Stored content is only available for the amount of time given by the TTL. Standard HTTP protocol specifies that Cache-Control can be used to set the TTL. Service quality can be improved through the use of various TTL policies and Chapter 5. Content Purge.

HTTP has various standards to classify content. As such, various Caching Keys exist as well. Not only will there be less load on the origin server with less content changes, but the service will be easier to scale up as well. In this chapter, we will discuss various ways to set up optimized expiration policies for a service.

If you want to apply the upcoming configurations to all virtual hosts as a default configuration, you can do so under the <VHostDefault> To do the opposite and apply them to specific virtual hosts, use the <Vhost> tag.

The Caching-Key is a distinct value that classifies content. It is similar to how a file system classifies files using a distinct path (e.g. ./user/conf.txt). It is easy to confuse Caching Keys with URLs. However, depending on the various functions of HTTP, identical URLs could return different content.

Time To Live (TTL)

The TTL is the amount of time stored content stays available. A longer TTL setting will reduce load on the origin server, but modifications will take longer to be applied because they must wait until the TTL expires. Conversely, a shorter TTL will mean higher load on the origin server due to more frequent requests for modification checks. The service can run smoothly when an appropriate TTL setting is found and the origin server load is decreased. When a TTL is set, it will not change until it expires. A new TTL is only applied to a file when the old TTL expires. Administrators can use API functions such as Purge, Expire, ExpireAfter, and HardPurge to change the TTL.

Default TTL

By default, the TTL is set based on the response of the origin server. The stored content will be provided until the TTL expires. When the TTL expires, a check request for modified content (If-Modified-Since or If-None-Match) will be sent to the origin server. If the origin server returns a 304 Not Modified response, the TTL is extended.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<TTL>
 <Res2xx Ratio="20" Max="86400">1800</Res2xx>
 <NoCache Ratio="0" Max="5" MaxAge="0">5</NoCache>
 <Res3xx>300</Res3xx>
 <Res4xx>30</Res4xx>
 <Res5xx>30</Res5xx>
 <ConnectTimeout>3</ConnectTimeout>
 <ReceiveTimeout>3</ReceiveTimeout>
 <OriginBusy>3</OriginBusy>
</TTL>

Except for Ratio (0~100), all units are in seconds.

	<Res2xx> (default: 1800 sec, Ratio: 20, Max: 86400)
Sets the TTL when the origin server responds with 200 OK. When content is first stored, it is set to expire after <Res2xx> seconds. After the TTL expires, if the content on the origin server has not changed (304 Not Modified), then the TTL is extended according to the Ratio value (0~100). The TTL can be increased up to Max seconds.

	<NoCache> (default: 5 sec, Ratio: 0, Max: 5, MaxAge: 0)
This function works identically to <Res2xx>, but is only used when the origin server responds with “no-cache”.

cache-control: no-cache or private or must-revalidate

If MaxAge is greater than 0, max-age can be applied.

[image: ../_images/nocache_maxage.png]
Files are cached for Max-Age seconds.

	<Res3xx> (default: 300 sec)
Sets the TTL when the origin server responds with “3xx”. This function is frequently used for redirects.

	<Res4xx> (default: 30 sec)
Sets the TTL when the origin server responds with “4xx”. Responses are often 404 Not Found.

	<Res5xx> (default: 30 sec)
Sets the TTL when the origin server responds with “5xx”. This usually occurs due to an internal error in the origin server.

	<ConnectTimeout> (default: 3 sec)
Sets the TTL when the origin server cannot be reached. If the content is already saved, then the TTL is extended for <ConnectTimeout> seconds. If the content is not saved, then an error status will be returned for <ConnectTimeout> seconds. The intention is to lessen the burden on the origin server for a TTL amount of time, not to provide an error status to the service.

	<ReceiveTimeout> (default: 3 sec)
Sets the TTL when the connection is successful but data could not be acquired. The intention is the same as <ConnectTimeout>.

	<OriginBusy> (default: 3 sec)
If the Overload Detection condition is satisfied, then the TTL of expired content will be extended for the set amount of time without making requests to the origin server. This is so that additional load is not placed on the origin server.

Note

If the TTL is set to zero, content will expire as soon as it is provided. If you want to have the origin server respond to all requests, a bypass is recommended.

Custom TTL

Separate TTLs can be set for each URL. Fixed TTLs can be set for content that match specific URLs or patterned URLs. This can be configured in /svc/{virtual host name}/ttl.txt.

/svc/www.example.com/ttl.txt
Commas (,) are used as delimiters and the unit of time is seconds.

*.jsp, 10
/,5
/index.html, 5
/script/*.js, 300
/image/ad.jpg, 1800

Even if you add *.html to set separate TTLs for all pages (e.g. html, php, jsp), this will not set the TTL for the first page (/). The HTTP protocol cannot identify what page is set as the first page (e.g. index.php, default.jsp) for the origin server. Therefore, in order to set a TTL for every page, a “/” should always be added.

TTL Priority

The order in which TTL is applied can be configured.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<TTL Priority="cc_nocache, custom, cc_maxage, rescode">
 ... (omitted) ...
</TTL>

This can be configured using the Priority (default: cc_nocache, custom, cc_maxage, rescode) item in the <TTL> tag.

	cc_nocache When the origin server responds with “Cache-Control: no-cache”.

	custom Custom TTL.

	cc_maxage When the origin server displays maxage in Cache-Control.

	rescode The default TTL for response codes from the origin server.

Abnormal TTL Extension

It’s obvious that an error has occurred if there is no response from the origin server, but there are cases when an error will have occurred while the server continues to respond normally at times. For example, it may lose connection with the storage that has the content, or it may decide that regular service is unavailable. The response will usually be a 4xx response (usually 404 Not Found) for the former or a 5xx response (usually 500 Internal Error) for the latter.

However, if the content is already stored, then it is more effective to extend the TTL to prevent total service failure rather than rely the origin server’s responses.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<TTLExtensionBy4xx>OFF</TTLExtensionBy4xx>
<TTLExtensionBy5xx>ON</TTLExtensionBy5xx>

	<TTLExtensionBy4xx>
	OFF (default) Updates content with a 4xx response.

	ON Acts as if the response was a 304 Not Modified.

You should also check to see if the 4xx response was intentional.

	<TTLExtensionBy5xx>
	ON (default) Acts as if the response was a 304 Not Modified.

	OFF Updates content with a 5xx response.

A normal server will not return a 5xx response, as it is used to reduce the load on the origin server by invalidating content from a temporary server error.

Update Policy

Content will be updated after the TTL expires and the update check is confirmed at the origin server.

[image: ../_images/perf_refreshexpired.jpg]
A response after checking for modifications.

	The TTL is valid and an immediate response is given.

	The TTL has expired, so a modification check (If-Modified-Since) is requested to the origin server. There is no response to the client until this check is performed.

	When a response is returned by the origin server, either the TTL is extended or the content is swapped. With confirmation from the origin server, a response will be made to the client.

	An immediate response is given for the checked content until its TTL expires.

For services like HD videos or games where transfer speed is more important than the response rate, this process is not very meaningful. With bulk data, it doesn’t matter that the origin server can respond within ten seconds because the transfer time takes much longer. Rather, since it is content that isn’t accessed frequently, it will need more renewal checks.

Meanwhile, online shopping malls are a different story. Web pages loading quickly is more important than anything else. The client’s screen must load in 1~2 seconds. In other words, the transfer time is more important than the response rate.

At this point, if the TTL expires and a update check must be performed, it could cause a huge delay. Considering the fact that most shopping malls must handle millions of items of content simultaneously, you must assume that update checks are constantly occurring on the origin server.

What we want is to stably transfer cached content regardless of any origin server error or delay.

[image: ../_images/perf_refreshexpired2.jpg]
We’re not afraid of errors!

These different requirements have led to the development of the background content renewal function.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<RefreshExpired>ON</RefreshExpired>

	<RefreshExpired>
	ON (default) Responds after the modification check.

	OFF Responds without waiting for the modification check response. Content will be swapped when new content is downloaded.

OFF The OFF setting is generally used because content is not changed very often.

[image: ../_images/perf_refreshexpired5.jpg]
There is no need to wait if content is not sensitive to changes.

As seen in the above image, because updating from the origin server takes place in the background, the cached content can be immediately sent to the client without waiting. If the origin server responds with 304 Not Modified, the TTL is extended. When the file is updated and the origin server responds with 200 OK, the file is smoothly replaced after it is fully downloaded. After the file is updated, users will receive the new file (colored yellow). Regardless of variables such as network failures or server failures, content updating will take place in the background and result in no service delays.

TTL Expiration when Clients Request no-cache

If there is at least one no-cache setting in the client’s HTTP request, then content can be made to expire right away.

GET /logo.jpg HTTP/1.1
...
cache-control: no-cache or cache-control:max-age=0
pragma: no-cache
...

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<NoCacheRequestExpire>OFF</NoCacheRequestExpire>

	<NoCacheRequestExpire>
	OFF (default) The request is ignored.

	ON The TTL is made to expire right away.

The expired content follows the Update Policy.

Accept-Encoding Header

Even though HTTP requests may be for the same URL, depending on the existence of an Accept-Encoding header, different content may be cached. When STON sends a request to the origin server, it has no idea of knowing if the file is compressed or not, and it can’t check for compression every time, either.

[image: ../_images/acceptencoding.png]
It’s impossible to know what kind of response the origin server will give.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<AcceptEncoding>ON</AcceptEncoding>

	<AcceptEncoding>
	ON (default) Will recognize the Accept-Encoding header sent by the HTTP client.

	OFF Will ignore the Accept-Encoding header sent by the HTTP client.

If the origin server does not support compression, or if the bulk file does not require compression, then it is recommended to set <AcceptEncoding> to OFF.

Case Sensitivity

STON is unable to tell on its own if the origin server can differentiate between upper and lower case letters.

[image: ../_images/casesensitive.png]
Either the content is the same or a 404 will occur.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<CaseSensitive>ON</CaseSensitive>

	<CaseSensitive>
	ON (default) Differentiates between upper and lower case letters.

	OFF Does not differentiate. All letters are processed as lower case.

QueryString Differentiation

It is not necessary to identify a query string unless the content is dynamically created by the query string If a URL contains a meaningless random value or a constantly changing time value, then it can create a lot of load on the origin server.

[image: ../_images/querystring.png]
If the content is not dynamic, it is more likely to be identical.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<ApplyQueryString Collective="OFF">ON</ApplyQueryString>

	<ApplyQueryString>
	ON (default) Identifies query strings. If one of the exception cases is met, the query string is ignored.

	OFF Ignores query strings. If one of the exception cases is met, the query string is identified.

Query string exception cases are saved at /svc/{virtual host name}/querystring.txt.

./svc/www.example.com/querystring.txt

/private/personal.jsp?login=ok*
/image/ad.jpg

Note that the exception case changes in meaning depending on the setting of <ApplyQueryString>. Specific or patterned URLs (only * patterns are allowed) can be used in the configuration.

The Collective property comes into play when the Chapter 5. Content Purge API is called.

	Collective
	OFF (default) Only the URL parameter will be targeted.

	ON All content with URLs containing query strings will be targeted, not just the URL parameter.

If the Collective property is set to ON and there are many files, CPU load will become higher. It may take longer to search for the correct files, and unforeseen problems may occur. It is recommended to call the Chapter 5. Content Purge API using clearly defined URLs with query strings as much as possible.

Vary Header

Content can be classified through the use of Vary headers. Generally, Vary headers are the primary cause of sudden drops in performance on the cache server.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<VaryHeader />

	<VaryHeader>

Configures the list of Vary headers to be supported among the ones returned by the origin server. Commas (,) are used as delimiters.

For example, if the origin server returns the following as the Vary header, it will be ignored because it is not set in <VaryHeader>.

Vary: Accept-Encoding, Accept, User-Agent

To exclude User-Agent and only recognize Accept-Encoding and Accept headers, do the following.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<VaryHeader>Accept-Encoding, Accept</VaryHeader>

To recognize all Vary headers sent by the origin server, do the following.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<VaryHeader>*</VaryHeader>

POST Request Caching

POST requests can be configured so that they are cached. POST requests have the same characteristics as URLs, but may differ in Body data.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<PostRequest MaxContentLength="102400" BodySensitive="ON">OFF</PostRequest>

	<PostRequest>
	OFF (default) If a POST request arrives, the session ends.

	ON POST requests are cached.

Most POST request processing cases use the Body data as Caching Keys. Detailed configuration can be made using the BodySensitive property and exception cases.

	BodySensitive

	ON (default) Body data is recognized as a Caching Key. Maximum length is set by the MaxContentLength (default: 102400 bytes) property. If one of the exception cases is met, the Body data is ignored.

	OFF Body data is ignored. If one of the exception cases is met, the Body data is recognized.

POST request exceptions can be set in the file /svc/{virtual host name}/postbody.txt.

/svc/www.example.com/postbody.txt

/bigsale/*.php?nocache=*
/goods/search.php

Note that the exception case changes in meaning depending on the setting of BodySensitive. Specific or patterned URLs (only * patterns are allowed) can be used in the configuration.

It is possible to mix up this setting with GET/POST Bypass. POST requests may not be cached at all depending on the <BypassPostRequest> (default: ON) setting. As such, to cache POST requests, either <BypassPostRequest> must be set to OFF or an exception case must be set. In order of priority:

	Bypasses the origin server if bypass conditions (GET/POST Bypass) are met.

	Terminates the connection if there is no Content-Length header.

	Caches files if PostRequest is set to ON and Content-Length does not exceed MaxContentLength.

	Terminates the request if none of the above scenarios are encountered.

Note

If MaxContentLength is set to too high of a value, a lot of memory will be needed to manage the Caching Key. It is best to set it as small as possible.

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STON Edge Server 2.3.4 documentation

Chapter 5. Content Purge

This chapter will explain how to purge cached content. Because there are many different conditions and environments, many different parts of the API are necessary.

Content cached from the origin server have update cycles based on the Time To Live (TTL). However, if the administrator wishes to immediately have the changes be effective, there is no need to wait until the Time To Live (TTL) expires. By using Purge/Expire/HardPurge, content can immediately be purged.

The purge API can be called by the browser, but in most cases it is automated. For example, when an FTP file upload is completed, Purge is called immediately. Administrators can configure behaviors in several ways as shown below.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<Purge2Expire>NONE</Purge2Expire>
<RootPurgeExpire>ON</RootPurgeExpire>
<ResCodeNoCtrlTarget>200</ResCodeNoCtrlTarget>

	<Purge2Expire> (default: NONE)

Purge requests will be processed as Expire depending on the setting. For example, if a pattern (*.jpg) used alongside Purge , the deletion of an unexpectedly large amount of content can cause immense load on the origin server. In this case, if all the requests are processed as Expire requests, that server load can be prevented.

	NONE Does not process requests as Expire.

	ROOT Processes requests for only the root directory (/) as Expire .

	PATTERN Processes requests with patterns as Expire.

	ALL Processes all requests as Expire.

	<RootPurgeExpire> (default: ON)

An unintentional Purge/Expire request on the root directory can also cause load on the origin server. This setting can intercept Purge/Expire requests and prevent them. This setting takes precedence over <Purge2Expire>.

	ON Purge/Expire is allowed.

	PURGE Only Purge is allowed.

	EXPIRE Only Expire is allowed.

	OFF All Purge/Expire requests are prevented.

	<ResCodeNoCtrlTarget> (default: 200)

Sets the HTTP response code for when Purge, Expire, HardPurge, and ExpireAfter have no target object.

Targets can be either URLs or patterns.

example.com/logo.jpg // URL
example.com/img/ // URL
example.com/img/*.jpg // pattern
example.com/img/* // pattern

While patterned URLs can be called, the amount of actual content being targeted cannot be known until the command is executed. Therefore, the administrator may underestimate the amount of content and try to purge too many targets, consuming more CPU than expected and causing strain on the system.

As such, it is strongly recommended to use only specific URLs. Patterned representations should only be used for the sake of administrative purposes when the service is not running.

Note

For security reasons, accessing specific directories (e.g. example.com/files/) is forbidden and returns 403 FORBIDDEN. However, the root directory is exempt: that is, if a user accesses example.com, their browser will request the root directory (/).

GET / HTTP/1.1
Host: example.com

The web server will respond with the default page set by the administrator (e.g. index.html). Most web services will return a page, not a directory, for the root directory (/).

However, when the cache server accesses the root directory, it will think it has received a 200 OK page, and won’t even be able to know what page was returned. In other words, to the cache server, a directory is just another URL.

example.com/img/ // The resulting page from accessing /img/ on the example.com virtual host
example.com/ // The default page (/) for the example.com virtual host
example.com/img/* // The /img/ directory and all pages below it on the example.com virtual host
example.com/* // All content on the example.com virtual host

Purge

Purges the target in order to have it be redownloaded from the origin server. Content will be cached again when it is first accessed after a purge. If the content is not available on the origin server due to an error, the purged content will be restored to keep the service running. This restored content will be updated after the time set by ConnectTimeout.

http://127.0.0.1:10040/command/purge?url=...

Target content can be designated with URLs and patterns, and can also be designated with vertical bars (“|”) to indicate multiple domains and multiple targets. If the domain name is omitted, the most recently used domain name is used.

http://127.0.0.1:10040/command/purge?url=http://www.site1.com/image.jpg
http://127.0.0.1:10040/command/purge?url=www.site1.com/image.jpg
http://127.0.0.1:10040/command/purge?url=www.site1.com/image/bmp/
http://127.0.0.1:10040/command/purge?url=www.site1.com/image/*.bmp
http://127.0.0.1:10040/command/purge?url=www.site1.com/image1.jpg|/css/style.css|/script.js
http://127.0.0.1:10040/command/purge?url=www.site1.com/image1.jpg|www.site2.com/page/*.html

The results are returned in JSON format. The number and size of purged items, as well as the elapsed time (units: ms) will be displayed. Content that has already been purged will not be purged again.

{
 "version": "2.0.0",
 "method": "purge",
 "status": "OK",
 "result": { "Count": 24, "Size": 3747491, "Time": 12 }
}

Using the <Purge2Expire> tag, Purge can be set to Expire under certain conditions. For a response with no results, the HTTP response code can be set with <ResCodeNoCtrlTarget>.

Note

If all origin servers are down due to errors, Purge will not work, as content is unable to be updated.

Expire

The TTL of the target content is set to expire immediately. A check for modification is made when the content is first accessed after expiring. If there is no change, there is no redownload; only the TTL is extended.

http://127.0.0.1:10040/command/expire?url=...

Everything else is identical to Purge.

ExpireAfter

The TTL of the target content is set so that the content expires the input number of seconds after the API is called. ExpireAfter can make the expiration time earlier and make content update faster, or it can make the expiration time later and reduce load on the origin server.

http://127.0.0.1:10040/command/expireafter?sec=86400&url=...

Though the function call format resembles Purge and Expire, the sec parameter (in seconds) can also set the expiration date. If the sec parameter is omitted, the default value of 1 day (86400 s) is applied, and setting it to 0 is not allowed. For a response with no results, the HTTP response code can be set with <ResCodeNoCtrlTarget>.

Note

ExpireAfter only sets the current expiration time, and does not affect custom TTLs or default TTLs. There is no change to cached content after an ExpireAfter call.

If the url parameter is entered first, the sec parameter may be recognized as a query string of the url parameter. Therefore, it is recommended to set enter the sec parameter first.

HardPurge

If there is an error in the origin server, Purge/Expire/ExpireAfter will retain the content and continue normally. In contrast, HardPurge means the content is permanently deleted. As HardPurge is the most powerful deletion method, deleted content cannot be restored if there is an error. For a response with no results, the HTTP response code can be set with <ResCodeNoCtrlTarget>.

http://127.0.0.1:10040/command/hardpurge?url=...

Default Purge Behavior

The behavior of content restoration after a Purge API call can be configured.

server.xml - <Server><Cache>

<Purge>Normal</Purge>

	<Purge>
	Normal (default) Behaves as if it was Purge. (Content is restored if there is an error.)

	Hard Behaves as if it was HardPurge. (Content is not restored if there is an error.)

HTTP Method

The purge API can be called with an extended HTTP Method.

PURGE /sample.dat HTTP/1.1
host: ston.winesoft.co.kr

HTTP methods fundamentally work under the manager port and the service port (80). HTTP Method requests sent to the service port can be configured in Administrator Settings.

POST Standard

The purge API can be called with POST, as shown below.

POST /command/purge HTTP/1.1
Content-Length: 37

url=http://ston.winesoft.co.kr/sample.dat

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STON Edge Server 2.3.4 documentation

Chapter 6. Handling HTTP Requests

This chapter will explain the HTTP client session and methods of handling HTTP requests. Parts of this chapter may be difficult to follow without some understanding of HTTP. However, as these functions are not critical to the service, you can simply use the default settings without affecting the quality of service at all.

Session Management

An HTTP session is created when an HTTP client connects to the STON server. Content saved on the server is delivered to the client through the HTTP session. The process from the request to the response is called an HTTP transaction. An HTTP session handles multiple HTTP transactions in succession.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<ConnectionHeader>keep-alive</ConnectionHeader>
<ClientKeepAliveSec>10</ClientKeepAliveSec>
<KeepAliveHeader Max="0">ON</KeepAliveHeader>

	<ConnectionHeader> (default: keep-alive)
Configures the Connection header (keep-alive or close) of the HTTP response sent to the client.

	<ClientKeepAliveSec> (default: 10 sec)
Terminates a session when there is no transaction with the client session for the given amount of time. If the time is set to too large a value, then the number of sessions that are not transacting can grow unexpectedly. Maintaining a large number of sessions can cause load on the system.

	<KeepAliveHeader>

	ON (default) Specifies the Keep-Alive header in the HTTP response. If Max (default: 0) is set to greater than zero, then the Max value will be used for the Keep-Alive header. Each HTTP transaction will reduce the value by one.

	OFF Omits the Keep-Alive header in the HTTP response.

HTTP Session Maintenance Polices

STON follows Apache policies as much as possible. Specifically, there are many variables in the session maintenance policies based on the value of the HTTP header. The following is a list of items that can influence HTTP session maintenance policies.

	The Connection header specified in the HTTP response (“Keep-Alive” or “Close”)

	Virtual host <Connection> setting

	Virtual host session Keep-Alive time setting

	Virtual host <Keep-Alive> setting

	When “Connection: Close” is specified in the client HTTP request:

GET / HTTP/1.1
...(omitted)...
Connection: Close

For an HTTP request like this, a “Connection: Close” response will be returned regardless of the virtual host settings. The Keep-Alive header will not be specified.

HTTP/1.1 200 OK
...(omitted)...
Connection: Close

When this HTTP transaction is completed, the connection is terminated.

	When <ConnectionHeader> is set to Close:

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<ConnectionHeader>Close</ConnectionHeader>

A “Connection: Close” response will be returned regardless of the client’s HTTP requests. The Keep-Alive header will not be specified.

HTTP/1.1 200 OK
...(omitted)...
Connection: Close

	When <KeepAliveHeader> is set to OFF:

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<ConnectionHeader>Keep-Alive</ConnectionHeader>
<KeepAliveHeader>OFF</KeepAliveHeader>

The Keep-Alive header will not be specified. The HTTP session can be continuously reused.

HTTP/1.1 200 OK
...(omitted)...
Connection: Keep-Alive

	When <KeepAliveHeader> is set to ON:

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<ConnectionHeader>Keep-Alive</ConnectionHeader>
<ClientKeepAliveSec>10</ClientKeepAliveSec>
<KeepAliveHeader>ON</KeepAliveHeader>

The Keep-Alive header will be specified. The Keep-Alive time setting of the session is used for the timeout value.

HTTP/1.1 200 OK
...(omitted)...
Connection: Keep-Alive
Keep-Alive: timeout=10

Note

The Relationship between <Keep-Alive> and <ClientKeepAliveSec>

The <Keep-Alive> setting references the <ClientKeepAliveSec> setting, but <ClientKeepAliveSec> is related to a more fundamental problem. The most important issue in terms of performance or resources is the issue of when to terminate idle sessions, or sessions where HTTP transactions are no longer occurring. HTTP header settings can be changed dynamically and can occasionally be omitted, but the termination of idle sessions is a more complicated problem. Because of this, <ClientKeepAliveSec> is not unified with <KeepAliveHeader> and exists separately.

	When the Max property of <KeepAliveHeader> is set:

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<ConnectionHeader>Keep-Alive</ConnectionHeader>
<ClientKeepAliveSec>10</ClientKeepAliveSec>
<KeepAliveHeader Max="50">ON</KeepAliveHeader>

The max value will be specified in the Keep-Alive header. The session can be used for the number set by the Max property, and each HTTP transaction will decrease the value by one.

HTTP/1.1 200 OK
...(omitted)...
Connection: Keep-Alive
Keep-Alive: timeout=10, max=50

	When the max value of Keep-Alive runs out:

As mentioned above, if the max value is set, it will gradually decrease until it hits one.

HTTP/1.1 200 OK
...(omitted)...
Connection: Keep-Alive
Keep-Alive: timeout=10, max=1

This means that only one more HTTP transaction is possible in the current session. After one more HTTP request, the response will be “Connection: Close” as shown below.

HTTP/1.1 200 OK
...(omitted)...
Connection: Close

Client Cache-Control

This section covers the settings related to client cache-control.

Age Header

The age header stands for the elapsed time (in seconds) from the moment something is cached, ans is calculated by RFC2616 - 13.2.3 Age Calculations [http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.2.3].

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<AgeHeader>OFF</AgeHeader>

	<AgeHeader>
	OFF (default) Omits Age header.

	ON Specifies Age header.

Expires Header

The following refreshes the Expires header.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<RefreshExpiresHeader Base="Access">OFF</RefreshExpiresHeader>

	<RefreshExpiresHeader>
	OFF (default) Specifies the Expires header returned by the origin server to the client. If the Expires header is omitted in the origin server, it will also be omitted in the response to the client.

	ON The Expires conditions will be reflected in the Expires header. The OFF setting will be applied for content that does not satisfy the conditions.

The Expires condition behaves identically to the mod_expires [http://httpd.apache.org/docs/2.2/mod/mod_expires.html] of Apache. You can also configure the Expires header and Cache-Control values of content that matches special conditions (such as URL or MIME Type). The max-age value of the Cache-Control is the difference between the given Expires time and the requested time.

The Expires conditions can be set in /svc/{virtual host name}/expires.txt.

/svc/www.exmaple.com/expires.txt
The delimiter is a comma (,), and the format is {condition},{time},{reference}.

$URL[/test.jpg], 86400
/test.jpg, 86400
*, 86400, access
/test/1.gif, 60 sec
/test/*.dat, 30 min, modification
$MIME[application/shockwave], 1 years
$MIME[application/octet-stream], 7 weeks, modification
$MIME[image/gif], 3600, modification

	
	Condition

	The condition can be set to either a URL or a MIME Type. $URL[...] is used for URL, and $MIME[...] is used for MIME Type. Patterned expressions can also be used, and if the $ format is not used, the condition will be recognized as a URL.

	
	Time

	Sets the Expires expiration time. Common units of time are supported, and if the units are not specified, seconds will be used.

	
	Reference

	Configures the reference point for the Expires expiration time. If a separate reference point is not specified, then it will use the Access as a reference. Access uses the current time as a reference. The following example indicates that for files that have a MIME Type of image/gif, the Expires header value will be set to 1 day and 12 hours after the access time.

$MIME[image/gif], 1 day 12 hours, access

Modification uses the Last-Modified time sent by the origin server as a reference. The following example indicates that for all JPG files, the Expires value will be set to 30 minutes after the Last-Modified time.

*.jpg, 30 min, modification

For Modification, if the calculated time turns out to be in the past relative to the current time, then the current time is used. If the origin server does not provide a Last-Modified header, then an Expires header will not be sent.

ETag Header

The ETag header in the HTTP response sent to the client can be configured.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<ETagHeader>ON</ETagHeader>

	<ETagHeader>
	ON (default) Specified ETag header.

	OFF Omits ETag header.

Response Headers

Origin Nonstandard Header

For the sake of performance and security, out of the headers sent by the origin server, only the standard headers will be recognized.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<OriginalHeader>OFF</OriginalHeader>

	<OriginalHeader>
	OFF (default) Ignores nonstandard headers.

	ON Saves all headers (with the exception of cookie, set-cookie, and set-cookie2) and sends them to the client. However, this option can consume more memory.

Via Header

The Via header in the HTTP response sent to the client can be configured.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<ViaHeader>ON</ViaHeader>

	<ViaHeader>

	ON (default) Specifies the Via header as follows.

Via: STON/2.0.0

	OFF Omits the Via header.

Server Header

The Server header in the HTTP response sent to the client can be configured.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<ServerHeader>ON</ServerHeader>

	<ServerHeader>
	ON (default) Specifies the Server header of the origin server.

	OFF Omits the Server header.

Client Request/Response Header Modification

The client’s requests and responses can be modified based on certain conditions.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<ModifyHeader FirstOnly="OFF">OFF</ModifyHeader>

	<ModifyHeader>
	OFF (default) Does not modify.

	ON Modifies the header based on the header modification conditions.

The following explains the points when the header is modified.

	
	HTTP Request Header Modification Point

	The header is modified when the client’s HTTP request is first recognized. If the header gets modified, then it will be handled in its modified state by the cache module. However, the Host header cannot have its URI modified.

	
	HTTP Response Header Modification Point

	The header is modified just before the response to the client. However, the Content-Length cannot be changed.

Header modification conditions can be set in /svc/{virtual host name}/headers.txt. Multiple conditions can be set, and if header meets all the conditions, then all modifications will be applied in order.

If only the first condition should be applied, then the FirstOnly property should be set to ON. If different conditions attempt to modify the same header, then the result will be Last-Win from set or specified by put or append.

/svc/www.example.com/headers.txt
The delimiter is a comma (,).

Request Modification
The format is {Match}, {$REQ}, {Action(set|put|append|unset)}.
$IP[192.168.1.1], $REQ[SOAPAction], unset
$IP[192.168.2.1-255], $REQ[accept-encoding: gzip], set
$IP[192.168.3.0/24], $REQ[cache-control: no-cache], append
$IP[192.168.4.0/255.255.255.0], $REQ[x-custom-header], unset
$IP[AP], $REQ[X-Forwarded-For], unset
$HEADER[user-agent: *IE6*], $REQ[accept-encoding], unset
$HEADER[via], $REQ[via], unset
$URL[/source/*.zip], $REQ[accept-encoding: deflate], set

Response Modification
The format is {Match}, {$RES}, {Action(set|put|append|unset)}, {condition}.
{condition} can modify the header based on special response codes, but is not mandatory.
$IP[192.168.1.1], $RES[via: STON for CDN], set
$IP[192.168.2.1-255], $RES[X-Cache], unset, 200
$IP[192.168.3.0/24], $RES[cache-control: no-cache, private], append, 3xx
$IP[192.168.4.0/255.255.255.0], $RES[x-custom-header], unset
$HEADER[user-agent: *IE6*], $RES[vary], unset
$HEADER[x-custom-header], $RES[cache-control: no-cache, private], append, 5xx
$URL[/source/*], $RES[cache-control: no-cache], set, 404
/secure/*.dat, $RES[x-custom], unset, 200
/*.mp4, $RES[Access-Control-Allow-Origin: example1.com], set
/*.mp4, $RES[Access-Control-Allow-Origin: example2.com], put

{Match} can be set to IP, GeoIP, Header, and URL forms.

	IP
The format is $IP[...] and supports the formats of IP, IP Range, Bitmask, and Subnet.

	GeoIP
The format is $IP[...] and GeoIP must be configured in advance.
The country codes ISO 3166-1 alpha-2 [http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2] and ISO 3166-1 alpha-3 [http://en.wikipedia.org/wiki/ISO_3166-1_alpha-3] are permitted.

	Header
The format $HEADER[Key : Value]. The Value can be either a specific expression or a pattern. If the Value is omitted, the condition will be the existence of a header corresponding to the Key.

	URL
The format is $URL[...] and can be omitted. It can be either a specific expression or a pattern.

{$REQ} and {$RES} configure how to modify the header. set, put, and append configure the header to {Key: Value}, and if the Value is omitted, an empty value (“”) will be input. unset will only input the {Key}.

{Action} can be set to one of the four settings: set , put , append , unset.

	set The Key and Value defined in the request/response header is added to the header. If the same Key is used, the new Value overwrites the old.

	put (resembles set) If the same Key is used, the new Value is added in a new line instead of overwriting the old Value.

	append (resembles set) If the same Key is used, the old Value and the new Value are attached with a comma (,).

	unset The Key defined in the request/response header is deleted from the header.

{Condition} can be set to a specific response code like 200 or 304 or can be set to a group of codes like 2xx, 3xx, 4xx, or 5xx. If {Match} matches but {Condition} does not, then the modification does not take place. If {Condition} is omitted, the response code is not checked.

URL Preprocessing

Regular expressions [http://en.wikipedia.org/wiki/Regular_expression] are used to modify the requested URLs. If URL preprocessing is defined, all client requests (HTTP or File I/O) must pass through the URL Rewriter.

[image: ../_images/urlrewrite1.png]
The request can only reach the virtual host by passing through the URL Rewriter.

If an approaching Host name is modified by the URL Rewriter, then it will consider it as if the Host header was modified by the client’s HTTP request. URL preprocessing is configured in the virtual host settings (vhosts.xml). While most settings are under the virtual host, URL preprocessing can change the name of the Host requested by the client, so the settings must be on the same level as the virtual host.

vhosts.xml

<Vhosts>
 <Vhost ...> ... </Vhost>
 <Vhost ...> ... </Vhost>
 <URLRewrite ...> ... </URLRewrite>
 <URLRewrite ...> ... </URLRewrite>
</Vhosts>

Multiple configurations are allowed, and the regular expressions will be checked in order.

vhosts.xml - <Vhosts>

<URLRewrite AccessLog="Replace">
 <Pattern>www.example.com/([^/]+)/(.*)</Pattern>
 <Replace>#1.example.com/#2</Replace>
</URLRewrite>

	<URLRewrite>

Configures URL preprocessing.
AccessLog (default: Replace) Configures URLs that will be recorded in the Access log. Replace records URLs after processing (/logo.jpg), while Pattern records URLs after processing (/baseball/logo.jpg).

Compression

STON can compress and deliver content in place of the origin server. Content must be categorized by the Accept-Encoding Header.

Accept-Encoding: gzip, deflate

[image: ../_images/compression_1.png]
Files are compressed and delivered in real time.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<Compression Method="gzip" Level="6" SourceSize="2-2048">OFF</Compression>

	<Compression>
	OFF (default) The compression function is not used.

	ON The compression function is used with the following properties.
	Method (default: gzip) Assigns the compression method. For now, only gzip is supported.

	Level (default: 6) Assigns the compression level. This value varies based on the Method used. Only 1~9 are available for gzip. A lower number means compression is faster but worse, while a higher number means compression is slower but better.

	SourceSize (default: 2-2048, unit: KB) Assigns a range for the source size. If files are too small, then files might be hardly compressed, while if files are too big, too much CPU might be consumed.

Compressed content is recognized and stored separately from the original content, and requests for the same content will not cause the content to be compressed again. The files to be compressed can be configured in /svc/{virtual host name}/compression.txt. The files will be compressed in that order.

/svc/www.example.com/compression.txt
The delimiter is a comma (,).
The format is {URL condition}, {Method}, {Level}.

/sample.css, no // No compression
*.css // Compress *.css with default method and level
*.htm, gzip // Compress *.html with gzip (default level)
*.xml, , 9 // Compress *.xml with level 9 (default method)
*.js, gzip, 5 // Compress *.js with gzip level 5.

Compression is a function that consumes a large amount of CPU. The following is a performance test done on gzip (level 9) with files of different sizes.

	OS CentOS 6.3 (Linux version 2.6.32-279.el6.x86_64 (mockbuild@c6b9.bsys.dev.centos.org) (gcc version 4.4.6 20120305(Red Hat 4.4.6-4) (GCC)) #1 SMP Fri Jun 22 12:19:21 UTC 2012)

	CPU Intel(R) Xeon(R) CPU E5-2603 0 @ 1.80GHz (8 processors) [http://www.cpubenchmark.net/cpu.php?cpu=Intel%20Xeon%20E5-2603%20@%201.80GHz]

	RAM 8GB

	HDD SAS 275GB X 5EA

	Size
	Comp. Ratio(%)
	Files
	Latency(ms)
	Client Traffic(Mbps)
	Origin Traffic(Mbps)

	1KB
	26.25
	5288
	6.72
	40.58
	55.02

	2KB
	57.45
	5238
	7.20
	41.52
	97.58

	4KB
	76.94
	5236
	7.18
	42.44
	184.04

	8KB
	87.61
	5021
	7.53
	41.87
	337.80

	16KB
	93.32
	4608
	8.30
	41.19
	616.83

	32KB
	96.26
	3495
	13.55
	34.53
	924.22

	64KB
	97.79
	1783
	24.50
	20.71
	938.83

	bootstrap.css(20KB)
	86.87
	3944
	9.67
	83.79
	638.25

	bootstrap.min.js(36KB)
	73.00
	1791
	51.50
	139.00
	514.86

If <Compression> is turned on, only uncompressed files will be requested from the origin server. In other words, the responses from the origin server will be to requests that have omitted the Accept-Encoding header. If the origin server specifies a Content-Encoding header to a request for uncompressed content, STON will recognize the content as already compressed and will not compress it again.

Note

Content that is already compressed on the origin server that matches <Compression> conditions may be compressed again. Since this can cause problems, this policy is followed.

	New content will be compressed.

	If the content is compressed on the origin server, it will not be compressed again.

	If the content is not compressed on the origin server, the corresponding content will be purged and compressed again.

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STON Edge Server 2.3.4 documentation

Chapter 7. Origin Server

This chapter will explain the relationship between STON and the origin server. The origin server generally refers to the web server that abides by the HTTP standard. For the sake of protecting the origin server, administrators should have a thorough understanding of the contents of this chapter. Doing so will enable you to establish a service that’s flexible and resistant to origin server errors.

The origin server must be protected. With a variety of ways errors can occur, there are a variety of countermeasures to deal with them. Having a proper protection policy for the origin server will make it easier during inspection.

Error Detection and Recovery

If an error occurs in the origin server during caching, the server is automatically excluded. When the server is judged to be stable, it will be brought back into the service.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<ConnectTimeout>3</ConnectTimeout>
<ReceiveTimeout>10</ReceiveTimeout>
<Exclusion>3</Exclusion>
<Recovery Cycle="10" Uri="/" ResCode="0" Log="ON">5</Recovery>

	<ConnectTimeout> (default: 3 sec)

If a connection to the origin server cannot be made within the set amount of time, it will be considered a connection failure.

	<ReceiveTimeout> (default: 10 sec)

If the origin server does not return an HTTP response for a normal HTTP request within the set amount of time, it will be considered a transaction failure.

	<Exclusion> (default: 3 times)

If an error occurs (<ConnectTimeout> or <ReceiveTimeout>) consecutively for the set number of times, the corresponding server will be excluded from the available server list. The value will be reset to 0 if a successful communication occurs before exclusion.

	<Recovery> (default: 5 times)

If the origin server responds with ResCode when Uri is requested every Cycle consecutively for the set number of times, the corresponding server will be restored. If this value is set to zero, the server will not be restored.

	Cycle (default: 10 sec) Makes a new request after the set amount of seconds.

	Uri (default: /) The Uri to be sent in the request.

	ResCode (default: 0) The response code to be identified as normal. If set to 0, any response will be considered a success regardless of the response code. If set to 200, the response code must be 200 for the response to be identified as normal. Commas (,) can be used to set multiple response codes. For example, if set to “200, 206, 404”, then any one of those response codes will be identified as normal.

	Log (default: ON) Records the HTTP transaction that was used for recovery to the Origin Log.

Health-Checker

Error Detection and Recovery responds to errors that occur during the caching process. <Recovery> will terminate an HTTP transaction as soon as a response code is received. However, Health-Checker checks for a successful HTTP transaction.

vhosts.xml - <Vhosts><Vhost>

<Origin>
 <Address> ... </Address>
 <HealthChecker ResCode="0" Timeout="10" Cycle="10"
 Exclusion="3" Recovery="5" Log="ON">/</HealthChecker>
 <HealthChecker ResCode="200, 404" Timeout="3" Cycle="5"
 Exclusion="5" Recovery="20" Log="ON">/alive.html</HealthChecker>
</Origin>

	<HealthChecker> (default: /)

Configures Health-Checker. Multiple configurations are allowed.
Uri is used as the input, and CDATA is used for invalid XML characters.

	ResCode (default: 0) The correct response code (multiple codes can be assigned with commas).

	Timeout (default: 10 sec) The available time from the socket connection until the HTTP transaction is completed.

	Cycle (default: 10 sec) The execution period.

	Exclusion (default: 3 times) The number of consecutive failures before excluding the server.

	Recovery (default: 5 times) The number of consecutive successes before reintroducing the server.

	Log (default: ON) Records the HTTP Transaction to the Origin Log.

Health-Checker can be configured in multiple ways and can be executed independently of client requests. It does not share information with Error Detection and Recovery or other Health-Checkers and uses only its own information to decide exclusion and recovery.

Origin Address Use Policy

The following factors are considered in deciding how to use the origin address (IP).

	Origin Server address format (IP or domain) and standby address

	Error Detection and Recovery

	Health-Checker

As a service is run, the origin address being excluded and recovered will occur frequently. STON uses IP Table-based origin addresses and provides information via the Origin Status Monitoring API.

It is simpler to set the origin address with an IP instead of a domain.

	Nothing will be able to change the IP list except for configuration changes.

	The IP address will not expire based on the TTL.

	Exclusion/recovery will work based on the IP address.

If the origin address is set with a domain, it must be resolved in order to obtain the IP. (This will be saved in the DNS Log.) The IP list will be able to be changed dynamically, and IPs will only be valid during the TTL.

	The domain will be resolved periodically (1~10 s).

	The IP Table to be used will be organized based on the resolving results.

	All IPs will be valid during the TTL and will not be used when the TTL expires.

	If an identical IP is resolved, the TTL will be refreshed.

	The IP Table cannot be empty. Even if the TTL is expired, the last IP will never be deleted.

Even if the origin address is set to a domain, error/recovery will work based on the IP address. Here there is something to keep in mind. The DNS client (STON) is unable to know the exact IP list for a domain. If a domain consists of only unavailable IP addresses, then it may constantly be in a state of error.

The domain address error/recovery policy is as follows.

	If all known IP addresses for a domain are excluded (Inactive), then the corresponding domain will also be excluded.

	Even if a new IP is resolved, if the domain is excluded then the IP address will also be excluded.

	Even if the TTLs of all IPs expire, this will not change the state of the excluded domain.

	At least one IP of an excluded domain must be recovered for that domain to also be recovered.

It is recommended to improve your understanding of service behavior through the Origin Status Monitoring API.

Origin Status Monitoring

An API is used to monitor the state of a virtual host’s origin server.

http://127.0.0.1:10040/monitoring/origin // All virtual hosts
http://127.0.0.1:10040/monitoring/origin?vhost=www.example.com

The results are given in JSON format.

{
 "origin" :
 [
 {
 "VirtualHost" : "example.com",
 "Address" :
 [
 { "1.1.1.1" : "Active" },
 { "1.1.1.2" : "Active" }
],
 "Address2" : [],
 "ActiveIP" :
 [
 { "1.1.1.1" : 0 },
 { "1.1.1.2" : 0 }
] ,
 "InactiveIP" : []
 },
 {
 "VirtualHost" : "foobar.com",
 "Address" :
 [
 { "origin.foobar.com" : "Active" }
],
 "Address2" : [],
 "ActiveIP" :
 [
 { "5.5.5.5" : 21 },
 { "5.5.5.6" : 60 },
 { "5.5.5.7" : 37 }
],
 "InactiveIP" :
 [
 { "5.5.5.8" : 10 },
 { "5.5.5.9" : 184 }
]
 }
]
}

	VirtualHost The virtual host name.

	Address Origin Server. It will return Active if the address is being used, and Inactive if not being used (due to an error).

	Address2 Standby Origin Server Address. It will return Active if the address is being used, and Inactive if not being used.

	ActiveIP The list of IPs in use and their TTLs. If the origin server is set with an IP address, an identical IP will be shown in Address with a TTL of 0. If set with a domain, the values depend on the resolving results. Various IPs and TTLs are used.

	InactiveIP The list of IPs not in use and their TTLs. Even though they are not in use, they can still be in a recovery status or being managed by Health-Checker. If the address is not recovered within the TTL, it will be removed.

Origin Status Reset

An API is used to reset the exclusion/recovery of origin servers of a virtual host. The current session will not be reused, and a new connection will be created instead.

http://127.0.0.1:10040/command/resetorigin // All virtual hosts
http://127.0.0.1:10040/command/resetorigin?vhost=www.example.com

Overload Detection

Content requested for the first time must always be retrieved from the origin server. However, content already cached can be taken care of more flexibly. If STON detects that the origin server is overloaded, renewal of content can be postponed so as to not increase server load.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<BusySessionCount>100</BusySessionCount>

	<BusySessionCount> (default: 100)
If the number of HTTP transactions taking place on the origin server exceeds the set value, it will be considered an overload. So that the origin server isn’t further accessed to renew expired content, the TTL is extended by the value of <OriginBusy> in Time To Live (TTL). This value can be set to a very large number if you want all requests to go to the origin server.

Origin Selection

This configures the origin server selection policy in the case when the origin server consists of multiple addresses (two or more).

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<BalanceMode>RoundRobin</BalanceMode>

	<BalanceMode> (default: RoundRobin)
	RoundRobin (default)
The server will be chosen via round-robin so that all origin servers receive requests uniformly. Connected idle sessions are only used when a request to the corresponding server is necessary.

	Session
A session will be used if it can be reused. If a new session is necessary, the next server will be chosen via round-robin.

	Hash
Content will be requested in a dispersed way following the consistent hashing [http://en.wikipedia.org/wiki/Consistent_hashing] algorithm. If a server is chosen, the current session will be reused; if there is no session, a new one will be created.

	/
	RoundRobin
	Session

	Load (Requests)
	Load is divided equally across servers
	Higher load on servers with better responsiveness and reusability

	Connection cost
	High (Finds a connection or attempts a new one for each server)
	Low (Only connects when the session can’t be reused)

	Reusability
	Low (Server division is prioritized)
	High (Already-connected sessions are prioritized)

	Session count
	Many (Sum of simultaneous HTTP transactions for each server)
	Few (Only as many sessions as there are HTTP transactions)

Session Recycle

If the origin server supports the Keep-Alive setting, then the connected session will always be reused. However, the origin server can unilaterally terminate connections to recycled sessions. As a result, the connection will need to be recovered, which can potentially lower user responsiveness. This is especially the case for sessions that haven’t been used in a while. To prevent this, sessions that aren’t reused for the set number of seconds will have their connection be automatically terminated.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<ReuseTimeout>60</ReuseTimeout>

	<ReuseTimeout> (default: 60 s)
Terminates sessions that have not been used within the set amount of time. If set to zero, origin server sessions will not be reused.

Range Request

Configures how much content is downloaded at a time. If the content is generally viewed from the front, such as videos, then setting a limit to the download size can reduce unnecessary origin traffic.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<PartSize>0</PartSize>

	<PartSize> (default: 0 MB)
If set to greater than zero, a range request will be used to download the set value (MB) starting from the point requested by the client.

Another reason to use <PartSize> is to save disk space. Under default settings, STON generates a file with the same size as the original on the disk. However, as long as <PartSize> is not zero, the file will be partitioned to the given size and saved.

For example, if a client watches the first minute (10 MB) of a one-hour (600 MB) video, only 10 MB of the disk space will be used. There is some benefit in saving disk space, but because the file is saved in parts, the disk load increases a little.

Note

When content is downloaded for the first time, the content length is unknown and a range request cannot be made. Therefore, if <PartSize> is configured, the connection will be closed after the set size is downloaded.

Initializing the Entire Range

Generally, whether a file is downloaded for the first time or is being checked for renewal on the origin server, the same simple GET request is sent.

GET /file.dat HTTP/1.1

However, origin servers configured to always modify files for general GET requests may have issues because the original file cannot be cached in its original form.

One of the most common examples is when the Apache web server embeds external modules such as mod_h.264_streaming. The Apache web server will always respond using the mod_h.264_streaming module. As such, the client (in this case, STON) will not receive the file as it originally was but a file modified by the module.

[image: ../_images/conf_origin_fullrangeinit1.png]
The mod_h.264_streaming module always modifies the original file.

A range request can be used to bypass the module and download the original.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<FullRangeInit>OFF</FullRangeInit>

	<FullRangeInit>

	OFF (default) A normal HTTP request is sent.

	ON A range request that begins with 0 is sent.
In Apache, if the range header is specified, the module is bypassed.

GET /file.dat HTTP/1.1
Range: bytes=0-

Because the Range can’t be known when a file is cached for the first time, Full-Range (starting with 0) is requested. You must verify that a normal response (206 OK) is returned for range requests.

If content is being renewed, the If-Modified-Since header will also be specified as below. The origin server must properly respond with 304 Not Modified.

GET /file.dat HTTP/1.1
Range: bytes=0-
If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT

Note

The following is a list of web servers where <FullRangeInit> is confirmed to work properly.

	Microsoft-IIS/7.5

	nginx/1.4.2

	lighttpd/1.4.32

	Apache/2.2.22

Keeping Client Requests

You can configure whether client requests are kept or changed via the Caching-Key.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<WholeClientRequest>OFF</WholeClientRequest>

	<WholeClientRequest>
	OFF (default) The Caching-Key is used as the URL requested to the origin server.

	ON The URL requested by the client is requested to the origin server.

To raise the Hit Ratio, the following settings are used to select the Caching-Key.

	Case Sensitivity

	QueryString Differentiation

	POST Request Caching

Therefore, the URL and Caching-Key requested to the origin server is determined in the following way.

	Setting
	Client Requested URL
	Origin Requested URL / Caching-Key

	Case Sensitivity OFF
	/Image/LOGO.png
	/image/logo.png

	Case Sensitivity ON
	/Image/LOGO.png
	/Image/LOGO.png

	QueryString Differentiation OFF
	/view/list.php?type=A
	/view/list.php

	QueryString Differentiation ON
	/view/list.php?type=A
	/view/list.php?type=A

If <WholeClientRequest> is set to ON, the URL sent by the client will be sent as is to the origin, regardless of the Caching-Key.

	Setting
	Client/Origin Requested URL
	Caching-Key

	Case Sensitivity OFF
	/Image/LOGO.png
	/image/logo.png

	Case Sensitivity ON
	/Image/LOGO.png
	/Image/LOGO.png

	QueryString Differentiation OFF
	/view/list.php?type=A
	/view/list.php

	QueryString Differentiation ON
	/view/list.php?type=A
	/view/list.php?type=A

When POST requests are cached and requested to the origin server, the body data of the POST request sent by the client is transmitted without modification.

Note

Because URLs sent by the client are not modified in anyway, QueryStrings added using functions such as Trimming will also be sent wihout modification.

Origin Request Default Header

Host Header

Configures the Host header of the HTTP request sent to the origin server. If not specified, the virtual host name will be used.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<Host />

	<Host>
Configures the Host header sent to the origin server. If the origin server uses a port other than 80, the port must be specified.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<Host>www.example2.com:8080</Host>

If you want to send the Host header from the client to the origin, * is used.

User-Agent Header

Configures the User-Agent header of the HTTP request sent to the origin server.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<UserAgent>STON</UserAgent>

	<UserAgent> (default: STON)
Configures the User-Agent header sent to the origin server.

If you want to send the User-Agent header from the client to the origin, * is used.

XFF (X-Forwarded-For) Header

If STON is placed between the client and the origin server, the origin server will not be able to obtain the client’s IP. Therefore, all HTTP requests sent by STON to the origin server have an X-Forwarded-For header.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<XFFClientIPOnly>OFF</XFFClientIPOnly>

	<XFFClientIPOnly>

	OFF (default) Appends the client’s IP to the XFF header sent by the client (IP: 128.134.9.1). If the client did not send an XFF header, only the client IP is displayed.

X-Forwarded-For: 220.61.7.150, 61.1.9.100, 128.134.9.1

	ON Sends the first address of the XFF header to the origin server.

X-Forwarded-For: 220.61.7.150

ETag Header Recognition

Configures the recognition of the ETag header returned by the origin server.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<OriginalETag>OFF</OriginalETag>

	<OriginalETag>
	OFF (default) The ETag header is ignored.

	ON The ETag header is recognized and an If-None-Match header is appended on content renewal.

Origin Request Header Modification

The HTTP header can be changed when sending HTTP requests to the origin server based on certain conditions.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<ModifyHeader FirstOnly="OFF">OFF</ModifyHeader>

	<ModifyHeader>
	OFF (default) Keeps the original header.

	ON The header changes based on conditions.

The point in time the header is changed is when the HTTP request packet is completed, just before it is sent to the origin server. However, range requests cannot be changed.

This function is a sub-function of Client Request/Response Header Modification. The $ORGREQ keyword is used for header changes.

/svc/www.example.com/headers.txt

$URL[/*.mp4], $ORGREQ[x-media-type: video/mp4], set
$IP[1.1.1.1], $ORGREQ[user-agent: media_probe], put
*, $ORGREQ[If-Modified-Since], unset
*, $ORGREQ[If-None-Match], unset

Note

If the If-Modified-Since and If-None-Match headers are set to unset, content will always be downloaded when their TTL expires.

Redirect Tracking

If the origin server returns responses from the Redirect category (301, 302, 303, 307), the Location header is tracked to request content.

[image: ../_images/conf_redirectiontrace.png]
Clients will not know if they are redirected or not.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<RedirectionTrace>OFF</RedirectionTrace>

	<RedirectionTrace>
	OFF (default) Saves as a 3xx response.

	ON Downloads content from the address given in the Location header. If the format of the header is incorrect or there is no header, then tracking will fail. In order to prevent infinite redirection, STON will only redirect once.

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STON Edge Server 2.3.4 documentation

Chapter 8. Bypass (Pass-through)

This chapter will explain how to set a bypass that delegates client request handling to the origin server. Bypasses can be divided into conditions and behaviors.

Bypass takes priority over the caching policy. If a service did not consider the edge server during the design state, it most likely cannot distinguish between static and dynamic resources. In this case, it can be configured so that all client requests are bypassed, caching only content that is frequently requested according to the log. In general, even a few hours of logging can dramatically decrease the load on the origin server. The real-time information provided by Chapter 10. Monitoring & Statistics is there to allow you to tune the service in real time.

Bypasses are not only fast, but they also work on the level of HTTP transactions. No matter how personalized a site is, it will generally be composed of a main page (.html) that changes dynamically, with the remaining 99% being made up of statis resources. A bypass version of Origin Request Default Header exists separately to match up with the actions of the origin server.

No-Cache Request Bypass

If the client sends a no-cache request, it will be bypassed.

GET / HTTP/1.1
cache-control: no-cache or cache-control:max-age=0
pragma: no-cache

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<BypassNoCacheRequest>OFF</BypassNoCacheRequest>

	<BypassNoCacheRequest>
	OFF (default) The request is handled by the cache module.

	ON The request is bypassed to the origin server.

Note

This setting is judged by the client’s action (likely Ctrl+F5). As a result, a large number of bypasses can cause strain on the origin server.

GET/POST Bypass

A bypass can be set to be the default action of GET/POST requests. It is important to keep in mind that because GET and POST are used differently, their actions will be different as well.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<BypassPostRequest>ON</BypassPostRequest>
<BypassGetRequest>OFF</BypassGetRequest>

	<BypassPostRequest>
	ON (default) The POST request is bypassed to the origin server.

	OFF The POST request is handled by STON.

	<BypassGetRequest>
	OFF (default) The GET request is handled by STON.

	ON The GET request is bypassed to the origin server.

Bypasses support the same conditions as Virtual Host ACL. Exception cases for bypasses can be set in /svc/{virtual host name}/bypass.txt.

/svc/www.example.com/bypass.txt
$IP[192.168.2.1-255]
/index.html

If cache or bypass conditions are not specified, the opposite of the default setting will be applied. For example, if <BypassGetRequest> is set to ON, the exception cases become the caching list. There is a lot of room for confusion, but the second parameter can be set to explicitly state the conditions.

/svc/www.winesoft.co.kr/bypass.txt

$HEADER[cookie: *ILLEGAL*], cache // Always cache
!HEADER[referer:] // Depends on the default setting
!HEADER[referer] & !HEADER[user-agent], bypass // Always bypass
$URL[/source/public.zip] // Depends on the default setting

The priority of actions is as follows.

	No-Cache bypass

	Bypass is specified in bypass.txt

	Default setting of bypass.txt

Fixed Origin Servers

Some transactions, such as login status, require a one-to-one communication between the origin server and the client.
Properties of GET/POST Bypass can be used to fix the origin server to the client.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<BypassPostRequest OriginAffinity="ON">...</BypassPostRequest>
<BypassGetRequest OriginAffinity="ON">...</BypassGetRequest>

	OriginAffinity

	ON (default) Guarantees that the client’s requests will always be bypassed to the same origin server. However, it is not guaranteed to be the same socket.

There is always the possibility that all the sockets of an origin server will lose connection. However, if this occurs, a new socket connection will simply be requested from the corresponding server.

[image: ../_images/private_bypass3.jpg]
Requests will always be bypassed to the same server.

If the origin server being bypassed to ends up being excluded due to errors or dropped from DNS, requests will be bypassed to a new server instead.

	OFF Will not guarantee which server the client requests will bypass to.

[image: ../_images/private_bypass1.jpg]
Requests will follow Origin Selection.

Fixed Origin Sessions

Each client socket will use a one-to-one bypass session with the origin server.

[image: ../_images/private_bypass2.jpg]
The client will have their own origin session.

Properties of GET/POST Bypass can be used to fix the origin session to the client.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<BypassPostRequest Private="OFF">...</BypassPostRequest>
<BypassGetRequest Private="OFF">...</BypassGetRequest>

	Private
	ON The client session will have their own private session on the origin server. Requests will always be bypassed to the same server. Either the client or the origin server can terminate the session, at which point the session will be terminated on the other end as well.

	OFF (default) Private sessions are not used.

Just as origin servers hold on to the user’s login information within a session, it is helpful if the client handles requests within the same socket as well.

Note

If too many requests are bypassed with Private, there will be as many origin server connections as there are clients, creating an immense amount of load. Also, because origin sessions connected in this way are owned by the clients, it could endanger the server to malicious attacks.

Timeout

There are many cases when a bypass responds with results dynamically processed in the origin server. As such, there are many cases when processing speed is slower than static content. Setting a timeout specifically for bypasses is recommended to avoid the system prematurely assuming an error situation.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<BypassConnectTimeout>5</BypassConnectTimeout>
<BypassReceiveTimeout>300</BypassReceiveTimeout>

	<BypassConnectTimeout> (default: 5 sec)
If the bypass is unable to connect to the origin server within the set time, it will be considered a connection timeout.

	<BypassReceiveTimeout> (default: 5 sec)
If there is no response from the origin server within the set time during a bypass, it will be considered a reception timeout.

Bypass Header

A bypass header configures whether or not to apply the bypass setting of Origin Request Default Header.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<UserAgent Bypass="OFF">...</UserAgent>
<Host Bypass="ON"/>
<XFFClientIPOnly Bypass="ON">...</XFFClientIPOnly>

	Bypass Property
	ON Specifies the configured header.

	OFF Specifies the relative headers sent by the clients.

Port Bypass

With a port bypass, the packets from a specific TCP port will all be bypassed to the origin server. This setting is exclusive to virtual hosts.

vhosts.xml - <Vhosts>

<Vhost Name="www.example">
 <PortBypass>443</PortBypass>
 <PortBypass Dest=”1935”>1935</PortBypass>
</Vhost>

	<PortBypass>
Bypasses all packets from the designated port to the same port on the origin server. The Dest property configures the destination port on the origin server.

For example, bypassing port 443 will have an effect similar to creating a direct SSL connection with the origin server. Ports being bypassed can never have multiple redundant settings.

Note

Structurally, port bypasses take place in the TCP, a layer beneath HTTP. The reason for setting up a port bypass under a specific virtual host is that the virtual host is needed to collect statistics.

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STON Edge Server 2.3.4 documentation

Chapter 9. HTTPS

This chapter will explain how to configure HTTPS. STON supports up to TLS 1.2, but allows SSL 2.0 only for upgrades due to security reasons. HTTPS is used only between the client and STON. STON does not communicate with the origin server using HTTPS, because it wouldn’t be suitable for security and performance reasons if STON used HTTPS as a relay. If the origin server must use HTTPS to communicate, using Port Bypass is recommended.

Service Configuration

As long as a specific IP or port is not designated, the default binding service address is “*.443”. This is configured in the global configuration (server.xml).

server.xml - <Server>

<Https>
 <Cert>/usr/ssl/cert.pem</Cert>
 <Key>/usr/ssl/certkey.pem</Key>
 <CA>/usr/ssl/CA.pem</CA>
</Https>

<Https Listen="1.1.1.1:443">
 <Cert>/usr/ssl_ip_port/cert.pem</Cert>
 <Key>/usr/ssl_ip_port/certkey.pem</Key>
 <CA>/usr/ssl_ip_port/CA.pem</CA>
</Https>

<Https Listen="*:886">
 <Cert>/usr/ssl_port/cert.pem</Cert>
 <Key>/usr/ssl_port/certkey.pem</Key>
 <CA>/usr/ssl_port/CA.pem</CA>
</Https>

	<Https> Configures HTTPS.
	<Cert> Server certificate.

	<Key> The private key for server certification. Encrypted formatting not supported.

	<CA> Certificate authority (CA) chain certificate.

Even if the same port is used, more specific expressions will take priority.

For example, if there are multiple NICs as in the example above, a client that connects using 1.1.1.1:443 will be given service using the second and more specific certificate (1.1.1.1:443), while a client that connects to 1.1.1.4:443 will be given service with the first and more general certificate (omitted, or *:443). If the certificate is overwritten with a file of the same name, the changes will be reflected upon reload.

Note

Only the PEM (Privacy Enhanced Mail) format is supported for certificates, and RSA for the asymmetric key algorithm.

SSL/TLS Acceleration

SSL/TLS can be accelerated using CPU (AES-NI). A CPU that supports AES-NI will prioritize the AES algorithm for SSL/TLS. If AES-NI is recognized, the following will be recorded in the Info.log file.

AES-NI : ON (SSL/TLS accelerated)

Administrators can select whether to use AES-NI or not.

server.xml - <Server><Cache>

<AES-NI>ON</AES-NI>

	<AES-NI> (default: ON) Decides whether or not AES-NI is used.

CipherSuite Selection

The following CipherSuites are supported.

	Cipher Suite
	TLS1.2
	TLS1.1/1.0
	SSL3.0

	TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xc02F)
	O
	
	

	TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 (0xC027)
	O
	
	

	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xC014)
	O
	O
	

	TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (0xC013)
	O
	O
	

	TLS_RSA_WITH_AES_128_GCM_SHA256 (0x009C)
	O
	
	

	TLS_RSA_WITH_AES_256_CBC_SHA256 (0x003D)
	O
	
	

	TLS_RSA_WITH_AES_128_CBC_SHA256 (0x003C)
	O
	
	

	TLS_RSA_WITH_AES_256_CBC_SHA (0x0035)
	O
	O
	

	TLS_RSA_WITH_AES_128_CBC_SHA (0x002F)
	O
	O
	

	TLS_RSA_WITH_3DES_EDE_CBC_SHA (0x000A)
	O
	O
	

	TLS_RSA_WITH_RC4_128_SHA (0x0005)
	
	
	O

	TLS_RSA_WITH_RC4_128_MD5 (0x0004)
	
	
	O

The CipherSuite to be used can be configured in the CipherSuite property of <Https>.

server.xml - <Server>

<Https CipherSuite="ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP">
 <Cert>/usr/ssl/cert.pem</Cert>
 <Key>/usr/ssl/certkey.pem</Key>
 <CA>/usr/ssl/CA.pem</CA>
</Https>

	CipherSuite Follows the SSLCipherSuite Directive in Apache mod_ssl [http://httpd.apache.org/docs/2.2/mod/mod_ssl.html#sslciphersuite].

A higher level of security can be obtained by ensuring forward secrecy [https://en.wikipedia.org/wiki/Forward_secrecy] (refer to links below).

	SSL Labs: Deploying Forward Secrecy [https://community.qualys.com/blogs/securitylabs/2013/06/25/ssl-labs-deploying-forward-secrecy]

	SSL/TLS & Perfect Forward Secrecy [http://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-secrecy.html]

	Configuring Apache, Nginx, and OpenSSL for Forward Secrecy [https://community.qualys.com/blogs/securitylabs/2013/08/05/configuring-apache-nginx-and-openssl-for-forward-secrecy]

By default, a CipherSuite that ensures forward secrecy (FS) is prioritized.

server.xml - <Server>

<Https FS="ON"> ... </Https>

	FS
	ON (default) A CipherSuite that ensures forward secrecy is prioritized.

	OFF Selects in the order specified by ClientHello.

The FS property takes priority over the CipherSuite property.

Note

Due to performance reasons, only ECDHE is supported. DHE is not supported.

Checking the CipherSuite

The results of configuring the CipherSuite can be checked. CipherSuite expression follows OpenSSL 1.0.0E [https://www.openssl.org/docs/apps/ciphers.html].

http://127.0.0.1:10040/monitoring/ssl?ciphersuite=...

The results are returned in JSON format.

{
 "version": "2.0.0",
 "method": "ssl",
 "status": "OK",
 "result":
 [
 {
 "Name" : "AES128-SHA",
 "Ver" : "SSLv3",
 "Kx" : "RSA",
 "Au" : "RSA",
 "Enc" : "AES(128)",
 "Mac" : "SHA1"
 },
 {
 "Name" : "AES256-SHA",
 "Ver" : "SSLv3",
 "Kx" : "RSA",
 "Au" : "RSA",
 "Enc" : "AES(256)",
 "Mac" : "SHA1"
 }
]
}

Multi-Domain Configuration

SSL configurations can cause problems when a single server runs multiple services simultaneously. Most Web/Cache servers decide which virtual host is used for the service by examining the Host header of the HTTP request.

[image: ../_images/ssl_alert.png]
General HTTPS communication.

Generally, the SSL identifies the server name (winesoft.co.kr) that the client (browser) tries to connect to using the certificate. However, if identification cannot be done with the certificate (e.g. the certificate is wrong or expired), then the user will be asked whether to trust the website or not (though there are cases when the site is blocked entirely). Though normal identification could not be done, SSL communication can still be established with the client’s trust.

[image: ../_images/faq_ssl1.jpg]
It is left to the client to judge.

If there is only one virtual host on the server that uses SSL, no problems will occur. However, multiple virtual hosts running simultaneously on a server can cause problems. This is because when the server sends the certificate to the client (“2. Certificate Transmission” in “General HTTPS communication”), the server is unable to know which host the client is trying to reach.

The following show some typical solutions for this issue.

	Method
	Pros
	Cons

	SNI
	Works with only server settings (standard)
	Windows XP and IE6 unsupported

	Multi Certificate
	Works by replacing only the certificate
	Main domain or service subject must be the same for faster reissuing

	Multi Port
	Works by changing only the port
	HTTPS port must be specified on the web page

	Multi NIC
	Works with only server settings (most widely used)
	Configuration of NIC and IP adding required

SNI (Server Name Indication)

This method makes use of the SNI (Server Name Indication) [http://en.wikipedia.org/wiki/Server_Name_Indication] expansion field of SSL/TLS. This function is used by specifying the target virtual host like the Host header of an HTTP request when the client requests an SSL connection from the server. Though this is the most elegant solution, there can be some compatibility issues. The following lists the clients that do not support SNI (source: Wikipedia - Server Name Indication [http://en.wikipedia.org/wiki/Server_Name_Indication#Client_side]).

	Internet Explorer (any version) on Windows XP or Internet Explorer 6 or earlier

	Safari on Windows XP

	BlackBerry Browser

	Windows Mobile up to 6.5

	Android default browser on Android 2.x[34] (Fixed in Honeycomb for tablets and Ice Cream Sandwich for phones)

	wget before 1.14

	Java before 1.7

Realistically, SNI cannot be used, and STON does not support SNI.

Multi Certificate

This method places multiple domains or wildcards (i.e. *.winesoft.co.kr) in the certificate so that multiple domains can be identified with only one certificate.

[image: ../_images/faq_ssl2.jpg]
Multiple domains can be certified with one certificate.

This method is effective if the subjects of the service are the same, but if there is no relation, sharing the certificate is rather difficult. As this method can be used just by replacing the certificate, there is no need to configure anything in STON (see also DigiCert [http://www.digicert.com/wildcard-ssl-certificates.htm]).

Multi Port

SSL uses port 443 by default. By setting up a port that does not overlap with the SSL port, multiple certificates can be installed. The port can be specified on the client to request an SSL connection.

https://winesoft.co.kr:543/

Multiple certificates can be set up in STON by specifying the ports in the Listen property, as shown below.

server.xml - <Server>

<Https> ..Certificate A.. </Https>
<Https Listen="*:543"> ..Certificate B.. </Https>
<Https Listen="*:544"> ..Certificate C.. </Https>

Though this is the most economical solution, there is the problem of having to specify the HTTPS port on all webpage links.

Multi NIC

If the server has multiple NICs, a different IP can be assigned to each NIC. A different certificate will be installed for each server IP, and STON will be configured to choose the certificate based on the IP accessed by the client. In STON, the IP can be specified in the Listen property to allow multiple certificates to be configured.

server.xml - <Server>

<Https Listen="10.10.10.10"> ..Certificate A.. </Https>
<Https Listen="10.10.10.11"> ..Certificate B.. </Https>
<Https Listen="10.10.10.12"> ..Certificate C.. </Https>

This method is the most widely used.

Note

If configurations are made public, problems can be caused by knowledge of IP addresses. In this case, NIC names can be used in place of IPs.

server.xml - <Server>

<Https Listen="eth0"> ... </Https>
<Https Listen="eth1"> ... </Https>
<Https Listen="eth2"> ... </Https>

Enabling Security Protocol

The protocol can be established for each <Https>.

server.xml - <Server>

<Https TLS1.2="ON" TLS1.1="ON" TLS1.0="ON" SSL3.0="ON"> ... </Https>

	TLS1.2 (default: ON) Uses TLS1.2.

	TLS1.1 (default: ON) Uses TLS1.1.

	TLS1.0 (default: ON) Uses TLS1.0.

	SSL3.0 (default: ON) Uses SSL3.0.

HSTS

HSTS (HTTP Strict Transport Security) [https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security] can be easily set up using Client Request/Response Header Modification.

/svc/www.example.com/headers.txt

*, $RES[Strict-Transport-Security: max-age=31536000; includeSubDomains], set

The Qualys SSL Server Test [https://www.ssllabs.com/ssltest/] only returns an A+ rating for sites with HSTS enabled.

[image: admin/img/qualys_a_plus.png]
STON can receive A+s starting from v2.2.

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STON Edge Server 2.3.4 documentation

Chapter 10. Monitoring & Statistics

This chapter will cover monitoring and statistics. While monitoring and statistics can be interpreted differently based on how they are used, they are similar in that they both use numbers to describe the system.

The most important feature is that it updates in real time. It is important to be able to view real-time status updates, and even a five-minute delay is too long. It is also important to know if the many policies are taking effect when they are applied. All statistics are collected every second.

Statistics are collected for each virtual host and are provided in real time (every second), with an average being provided every five minutes. The results are provided in JSON and XML formats for the users to analyze and process the results easily.

http://127.0.0.1:10040/monitoring/realtime?type=[JSON or XML]
http://127.0.0.1:10040/monitoring/average?type=[JSON or XML]

	realtime
Displays the service status from one second ago.

	average
Displays the average of five minutes of statistics.

Data Range

The range of data to be collected can be configured.

server.xml - <Server><VHostDefault>
vhosts.xml - <Vhosts><Vhost>

<Stats>
 <DirDepth>0</DirDepth>
 <DirDepthAccum>OFF</DirDepthAccum>
 <HttpsTraffic>OFF</HttpsTraffic>
 <ClientLocal>OFF</ClientLocal>
 <OriginLocal>OFF</OriginLocal>
</Stats>

	
	<DirDepth> (default: 0)

	Collects statistics for each directory. If set to zero, statistics will be collected in the root (/) directory. If set to one, statistics will be collected in directories one level down.

Note

Though there is no limit to the value that can be set, collecting statistics for too many directories can cause memory problems.

	
	<DirDepthAccum>

	Configures whether or not to accumulate statistics in the parent directory when collecting the statistics for each directory. If <DirDepth> is set to zero, this setting is ignored.

	OFF (default) Statistics are not accumulated in the parent directory.

	ON Statistics are accumulated in the parent directory.

For example, let’s assume that <DirDepth> is set to two and all directories have ten lines of traffic. If <DirDepthAccum> is set to OFF, then statistics will be collected in each directory where traffic occurs, as shown in the left diagram. If set to ON, statistics from lower directories are accumulated in parent directories, as shown in the right diagram.

[image: ../_images/stats_dirdepth.jpg]
Accumulated statistics in the parent directory.

In this example, the sum of the traffic in the /img directory and its subdirectories is 30, which is accumulated into the parent directory.

	
	<HttpsTraffic>

	
	OFF (default) HTTPS traffic is only collected in SSL statistics.

	ON HTTPS traffic is collected into both SSL and HTTP statistics.

Generally, traffic that passes through the SSL layer is stored separately as SSL statistics. However, HTTPS will be processed as HTTP in upper protocols, so more detailed statistics can be collected. Because SSL and HTTP statistics can overlap, it is recommended to only trust HTTP statistics.

	
	<ClientLocal>

	The traffic between the Loopback client and STON can be included in statistics.

	OFF (default) Will not be included.

	ON Will be included.

	
	<OriginLocal>

	The traffic between STON and the Loopback origin server will be included.

	OFF (default) Will not be included.

	ON Will be included.

Host Aggregate Statistics

Host statistics are the aggregate statistics of all the virtual hosts that run on the lowest level. The statistics can be provided in JSON and XML formats.

{ <Host
 "Host": Version="2.0.0"
 { Name="localhost"
 "Version":"2.0.0", State="Healthy"
 "Name":"localhost", Uptime="155986"
 "State":"Healthy", OriginSession="32"
 "Uptime":155996, OriginActiveSession="20"
 "OriginSession":33, OriginInbound="1140741"
 "OriginActiveSession":20, OriginOutbound="10059"
 "OriginInbound":688177, OriginReqCount="42"
 "OriginOutbound":14184, OriginResTotalCount="42"
 "OriginReqCount":62, OriginResTotalTimeRes="5071"
 "OriginResTotalCount":62, OriginResTotalTimeComplete="10288"
 "OriginResTotalTimeRes":2375, OriginRes2xxCount="19"
 "OriginResTotalTimeComplete":2509, OriginRes2xxTimeRes="9989"
 "OriginRes2xxCount":54, OriginRes2xxTimeComplete="21521"
 "OriginRes2xxTimeRes":2327, OriginRes3xxCount="23"
 "OriginRes2xxTimeComplete":2481, OriginRes3xxTimeRes="1008"
 "OriginRes3xxCount":8, OriginRes3xxTimeComplete="1008"
 "OriginRes3xxTimeRes":2700, OriginRes4xxCount="0"
 "OriginRes3xxTimeComplete":2700, OriginRes4xxTimeRes="0"
 "OriginRes4xxCount":0, OriginRes4xxTimeComplete="0"
 "OriginRes4xxTimeRes":0, OriginRes5xxCount="0"
 "OriginRes4xxTimeComplete":0, OriginRes5xxTimeRes="0"
 "OriginRes5xxCount":0, OriginRes5xxTimeComplete="0"
 "OriginRes5xxTimeRes":0, ClientSession="165"
 "OriginRes5xxTimeComplete":0, ClientActiveSession="80"
 "ClientSession":155, ClientInbound="14792"
 "ClientActiveSession":80 ClientOutbound="1981700"
 "ClientInbound":35748, ClientReqCount="64"
 "ClientOutbound":972906, ClientResTotalCount="64"
 "ClientReqCount":152, ClientResTotalTimeRes="5535"
 "ClientResTotalCount":152, ClientResTotalTimeComplete="6840"
 "ClientResTotalTimeRes":1411, ClientRes2xxCount="44"
 "ClientResTotalTimeComplete":1479, ClientRes2xxTimeRes="8050"
 "ClientRes2xxCount":93, ClientRes2xxTimeComplete="9943"
 "ClientRes2xxTimeRes":2305, ClientRes3xxCount="20"
 "ClientRes2xxTimeComplete":2409, ClientRes3xxTimeRes="5"
 "ClientRes3xxCount":59, ClientRes3xxTimeComplete="15"
 "ClientRes3xxTimeRes":3, ClientRes4xxCount="0"
 "ClientRes3xxTimeComplete":13, ClientRes4xxTimeRes="0"
 "ClientRes4xxCount":0, ClientRes4xxTimeComplete="0"
 "ClientRes4xxTimeRes":0, ClientRes5xxCount="0"
 "ClientRes4xxTimeComplete":0, ClientRes5xxTimeRes="0"
 "ClientRes5xxCount":0, ClientRes5xxTimeComplete="0"
 "ClientRes5xxTimeRes":0, RequestHitRatio="6923"
 "ClientRes5xxTimeComplete":0, ByteHitRatio="4243">
 "RequestHitRatio":6387, <HttpCountSum
 "ByteHitRatio":2926, OriginReqCount="0"
 "HttpCountSum" : OriginResTotalCount="0"
 { OriginRes2xxCount="0"
 "OriginReqCount" : 0, OriginRes3xxCount="0"
 "OriginResTotalCount" : 0, OriginRes4xxCount="0"
 "OriginRes2xxCount" : 0, OriginRes5xxCount="0"
 "OriginRes3xxCount" : 0, ClientReqCount="0"
 "OriginRes4xxCount" : 0, ClientResTotalCount="0"
 "OriginRes5xxCount" : 0, ClientRes2xxCount="0"
 "ClientReqCount" : 0, ClientRes3xxCount="0"
 "ClientResTotalCount" : 0, ClientRes4xxCount="0"
 "ClientRes2xxCount" : 0, ClientRes5xxCount="0"/>
 "ClientRes3xxCount" : 0, <HttpRequestHitSum
 "ClientRes4xxCount" : 0, TCP_NONE="0"
 "ClientRes5xxCount" : 0 TCP_HIT="0"
 }, TCP_IMS_HIT="0"
 "HttpRequestHitSum" : TCP_REFRESH_HIT="0"
 { TCP_REF_FAIL_HIT="0"
 "TCP_NONE" : 0, TCP_NEGATIVE_HIT="0"
 "TCP_HIT" : 0, TCP_REDIRECT_HIT="0"
 "TCP_IMS_HIT" : 0, TCP_MISS="0"
 "TCP_REFRESH_HIT" : 0, TCP_REFRESH_MISS="0"
 "TCP_REF_FAIL_HIT" : 0, TCP_CLIENT_REFRESH_MISS="0"
 "TCP_NEGATIVE_HIT" : 0, TCP_DENIED="0"
 "TCP_REDIRECT_HIT" : 0, TCP_ERROR="0"/>
 "TCP_MISS" : 0, <FileSystem>
 "TCP_REFRESH_MISS" : 0, <RequestHitRatio>0</RequestHitRatio>
 "TCP_CLIENT_REFRESH_MISS" : 0, <ByteHitRatio>0</ByteHitRatio>
 "TCP_DENIED" : 0, <Outbound>0</Outbound>
 "TCP_ERROR" : 0 <Session>0</Session>
 }, </FileSystem>
 "FileSystem": <System> ... </System>
 { <VirtualHost> ... </VirtualHost>
 "RequestHitRatio":0, <VirtualHost> ... </VirtualHost>
 "ByteHitRatio":0, <VirtualHost> ... </VirtualHost>
 "Outbound":0, <View> ... </View>
 "Session":0 <View> ... </View>
 }, </Host>
 "System":{ ... },
 "VirtualHost": [...]
 "View": [...]
 }
}

	Version STON version.

	Name The host name. If not defined, the system name will be used.

	State Service status. (Healthy=Normal service, Inactive=Inactive license, Emergency)

	Uptime (unit: seconds) The service running time.

	OriginSession The number of origin sessions.

	OriginActiveSession The number of transmitting origin sessions.

	OriginInbound (unit: bytes, average) The amount of data received from the origin server.

	OriginReqCount (average) The amount of requests to the origin server.

	OriginOutbound (unit: bytes, average) The amount of data transmitted to the origin server.

	OriginResTotalCount (average) The number of responses from the origin server.

	OriginResTotalTimeRes (unit: 0.01 ms, average) The origin server response time (from HTTP request to first HTTP response).

	OriginResTotalTimeComplete (unit: 0.01 ms, average) The origin server HTTP transaction completion time (from HTTP request to HTTP response completion).

	OriginRes2xxCount (average) The number of 2xx responses from the origin server.

	OriginRes2xxTimeRes (unit: 0.01 ms, average) The origin server 2xx response time.

	OriginRes2xxTimeComplete (unit: 0.01 ms, average) The origin server 2xx transaction completion time.

	OriginRes3xxCount (average) The number of 3xx responses from the origin server.

	OriginRes3xxTimeRes (unit: 0.01 ms, average) The origin server 3xx response time.

	OriginRes3xxTimeComplete (unit: 0.01ms, average) The origin server 3xx transaction completion time.

	OriginRes4xxCount (average) The number of 4xx responses from the origin server.

	OriginRes4xxTimeRes (unit: 0.01 ms, average) The origin server 4xx response time.

	OriginRes4xxTimeComplete (unit: 0.01ms, average) The origin server 4xx transaction completion time.

	OriginRes5xxCount (average) The number of 5xx responses from the origin server.

	OriginRes5xxTimeRes (unit: 0.01 ms, average) The origin server 5xx response time.

	OriginRes5xxTimeComplete (unit: 0.01 ms, average) The origin server 5xx transaction completion time.

	ClientSession The number of client sessions.

	ClientActiveSession The number of transmitting client sessions.

	ClientInbound (unit: bytes, average) The amount of inbound data from clients.

	ClientOutbound (unit: bytes, average) The amount of outbound data to clients.

	ClientReqCount (average) The number of client requests.

	ClientResTotalCount (average) The number of client responses.

	ClientResTotalTimeRes (unit: 0.01 ms, average) The client response time (from HTTP request to first HTTP response).

	ClientResTotalTimeComplete (unit: 0.01 ms, average) The client HTTP transaction completion time (from HTTP request to HTTP response completion).

	ClientRes2xxCount (average) The number of 2xx responses from the client.

	ClientRes2xxTimeRes (unit: 0.01 ms, average) The client 2xx response time.

	ClientRes2xxTimeComplete (unit: 0.01 ms, average) The client 2xx transaction completion time.

	ClientRes3xxCount (average) The number of 3xx responses from the client.

	ClientRes3xxTimeRes (unit: 0.01 ms, average) The client 3xx response time.

	ClientRes3xxTimeComplete (unit: 0.01 ms, average) The client 3xx transaction completion time.

	ClientRes4xxCount (average) The number of 4xx responses from the client.

	ClientRes4xxTimeRes (unit: 0.01 ms, average) The client 4xx response time.

	ClientRes4xxTimeComplete (unit: 0.01 ms, average) The client 4xx transaction completion time.

	ClientRes5xxCount (average) The number of 5xx responses from the client.

	ClientRes5xxTimeRes (unit: 0.01 ms, average) The client 5xx response time.

	ClientRes5xxTimeComplete (unit: 0.01 ms, average) The client 5xx transaction completion time.

	RequestHitRatio (unit: 0.01%, average) Hit ratio.
If a caching object is created and the corresponding object is initialized, it is considered a hit. On the other hand, if the caching object is missing or the object is not initialized from the origin server, it does not count as a hit. The response code is unrelated to the hit ratio.

[image: ../_images/stat_filesystem1.png]
HTTP and File I/O share the virtual host.

The RequestHitRatio of File I/O accessed via Apache will become 0%. The HTTP server, however, accesses cached files due to File I/O, making the RequestHitRatio 100%. ByteHitRatio is calculated as the ratio of the origin inbound to either HTTP outbound or File I/O outbound.

	ByteHitRatio (unit: 0.01%, average) The transfer ratio of the origin server to the client.

(Client Outbound - Origin Server Inbound) / Client Outbound

If the origin server is much faster or the client session closes quickly, then the total ratio can become a negative value.

	FileSystem Independent FileSystem statistics that do not count other stat values.

	RequestHitRatio (unit: 0.01%, average) Hit ratio based on File I/O.

	ByteHitRatio (unit: 0.01%, average) Transfer ratio of origin server to File I/O.

	Outbound (unit: bytes, average) Size of data that goes through File I/O.

	Session (average) The number of threads in the File I/O process.

Note

These statistics are only provided in five-minute increments.

	HttpCountSum The total number of HTTP transactions.

	HttpRequestHitSum The cache hit results.

System Statistics

The statistics of the system and global resources can be provided in JSON and XML formats.

"System": <System>
{ <CPU
 "CPU": Kernel="689"
 { User="1316"
 "Kernel":689, Idle="7993"
 "User":1316, ProcKernel="570"
 "Idle":7993, ProcUser="1216"
 "ProcKernel":570, Nice="0"
 "ProcUser":1216, IOWait="52"
 "Nice":0, IRQ="10"
 "IOWait":52, SoftIRQ="12"
 "IRQ":10, Steal="0" />
 "SoftIRQ":12, <Mem Free="5914644" STON="9785800"/>
 "Steal":0 <Storage>
 }, <Disk
 "Mem": Path="/cache1"
 { Status="Normal"
 "Free":5914644, Read="23"
 "STON":9785800 ReadMerged="0"
 }, ReadSectors="344"
 "Storage": ReadTime="117"
 { Write="24"
 "Disk": WriteMerged="93"
 [WriteSectors="936"
 { WriteTime="256"
 "Path":"/cache1", IOProgress="0"
 "Status":"Normal", IOTime="173"
 "Read":23, IOWeightedTime="373"/>
 "ReadMerged":0, <Disk
 "ReadSectors":344, Path="/cache2"
 "ReadTime":117, Status="Normal"
 "Write":24, Read="27"
 "WriteMerged":93, ReadMerged="1"
 "WriteSectors":936, ReadSectors="488"
 "WriteTime":256, ReadTime="144"
 "IOProgress":0, Write="24"
 "IOTime":173, WriteMerged="86"
 "IOWeightedTime":373 WriteSectors="880"
 }, WriteTime="254"
 { IOProgress="0"
 "Path":"/cache2", IOTime="189"
 "Status":"Normal", IOWeightedTime="380"/>
 "Read":27, </Storage>
 "ReadMerged":1, <ServerSocket
 "ReadSectors":488, Total="42"
 "ReadTime":144, Established="2"
 "Write":24, Accepted="1"
 "WriteMerged":86, Closed="0"/>
 "WriteSectors":880, <ClientSocket
 "WriteTime":254, Total="1"
 "IOProgress":0, Established="0"
 "IOTime":189, Connected="0"
 "IOWeightedTime":380 Closed="0"/>
 } <TCPSocket
] Established="30"
 }, Timewait="2"
 "ServerSocket": Orphan="0"
 { Alloc="0"
 "Total":42, Mem="20"/>
 "Established":1, <EQ>0</EQ>
 "Accepted":0, <RQ>1000000</RQ>
 "Closed":0 <WaitingFiles2Write>0</WaitingFiles2Write>
 }, <ServiceAccess Allow="60" Deny="2"/>
 "ClientSocket": <SystemLoadAverage Min1="0" Min5="0" Min15="0"/>
 { <URLRewrite>57</URLRewrite>
 "Total":1, </System>
 "Established":0,
 "Connected":0,
 "Closed":0
 },
 "TCPSocket":
 {
 "Established":30,
 "Timewait":2,
 "Orphan":0,
 "Alloc":0,
 "Mem":20
 },
 "EQ":0,
 "RQ":1000000,
 "WaitingFiles2Write":0,
 "ServiceAccess":{"Allow":60, "Deny":2}
 "SystemLoadAverage":
 {
 "Min1":0,
 "Min5":0,
 "Min15":0
 },
 "URLRewrite":57
}

	CPU (unit: 0.01%) CPU usage. Total CPU usage can be calculated by Kernel + User.
	Kernel CPU (Kernel) usage.

	User CPU (User) usage.

	Idle Idle CPU.

	ProcKernel CPU (Kernel) usage by STON.

	ProcUser CPU (User) usage by STON.

	Nice Time spent running ‘niced’ user processes.

	IOWait Time spent waiting for I/O to complete.

	IRQ Time spent servicing interrupts.

	SoftIRQ Time spent servicing software interrupts.

	Steal Time spent while other CPUs are serviced.

	Mem (unit: bytes) Memory usage.
	Free Size of free memory in the system.

	STON Size of memory used by STON.

	Disk Disk performance stats.
	Path Disk path.

	Status Disk status (Normal: normal, Invalid: excluded due to failure, Unmounted: unmounted by administrator).

	Read The number of successful reads.

	ReadMerged The number of merged reads.

	ReadSectors The number of read sectors.

	ReadTime (unit: ms) The elapsed time per read.

	Write The number of successful writes.

	WriteMerged The number of merged writes.

	WriteSectors The number of written sectors.

	WriteTime (unit: ms) The elapsed time per write.

	IOProgress The number of running I/Os.

	IOTime (unit: ms) The elapsed time per I/O.

	IOWeightedTime (unit: ms) The elapsed time per I/O (weight applied).

	ServerSocket Server socket (between client and STON) information.
	Total The total number of server sockets.

	Established The number of connected server sockets.

	Accepted The number of newly connected server sockets.

	Closed The number of closed server sockets.

	ClientSocket Client socket (between STON and the origin server) information.
	Total The total number of client sockets.

	Established The number of connected client sockets.

	Connected The number of newly connected client sockets.

	Closed The number of closed client sockets.

	TCPSocket TCP status information provided by the system (OS).
	Established The number of established status TCP connections.

	Timewait The number of TIME_WAIT status TCP connections.

	Orphan The number of orphaned TCP connections (not attached to a file handle).

	Alloc The number of allocated TCP sockets.

	Mem The amount of memory used by TCP sockets.

	EQ The number of unprocessed events in the STON Framework.

	RQ The number of events saved in the recently serviced content reference queue.

	WaitingFiles2Write The number of disk write pending files.

	ServiceAccess The number of sockets allowed and denied by ServiceAccess.

	SystemLoadAverage The 1/5/15 minute average of the System Load Average.

	URLRewrite The number of successful conversions made by the URL preprocessor.

Virtual Host Statistics

Statistics are provided for each virtual host. There are four types of virtual host statistics: HTTP transfer (per directory), URL bypass, port bypass, and SSL.

"VirtualHost": <VirtualHost
[Name="image.11st.co.kr"
 { Uptime="155956"
 "Name":"image.11st.co.kr", OriginSession="12"
 "Uptime":155966, OriginActiveSession="6"
 "OriginSession":12, OriginInbound="106914"
 "OriginActiveSession":6, OriginOutbound="3238"
 "OriginInbound":169, OriginReqCount="42"
 "OriginOutbound":269, OriginResTotalCount="13"
 "OriginReqCount":62, OriginResTotalTimeRes="1553"
 "OriginResTotalCount":1, OriginResTotalTimeComplete="6630"
 "OriginResTotalTimeRes":3300, OriginRes2xxCount="1"
 "OriginResTotalTimeComplete":3300, OriginRes2xxTimeRes="3300"
 "OriginRes2xxCount":0, OriginRes2xxTimeComplete="69300"
 "OriginRes2xxTimeRes":0, OriginRes3xxCount="12"
 "OriginRes2xxTimeComplete":0, OriginRes3xxTimeRes="1408"
 "OriginRes3xxCount":1, OriginRes3xxTimeComplete="1408"
 "OriginRes3xxTimeRes":3300, OriginRes4xxCount="0"
 "OriginRes3xxTimeComplete":3300, OriginRes4xxTimeRes="0"
 "OriginRes4xxCount":0, OriginRes4xxTimeComplete="0"
 "OriginRes4xxTimeRes":0, OriginRes5xxCount="0"
 "OriginRes4xxTimeComplete":0, OriginRes5xxTimeRes="0"
 "OriginRes5xxCount":0, OriginRes5xxTimeComplete="0"
 "OriginRes5xxTimeRes":0, ClientSession="30"
 "OriginRes5xxTimeComplete":0, ClientActiveSession="12"
 "ClientSession":26, ClientInbound="4113"
 "ClientActiveSession":16, ClientOutbound="895937"
 "ClientInbound":13968, ClientReqCount="64"
 "ClientOutbound":110398, ClientResTotalCount="18"
 "ClientReqCount":152, ClientResTotalTimeRes="666"
 "ClientResTotalCount":52, ClientResTotalTimeComplete="4377"
 "ClientResTotalTimeRes":94, ClientRes2xxCount="10"
 "ClientResTotalTimeComplete":107, ClientRes2xxTimeRes="1200"
 "ClientRes2xxCount":1, ClientRes2xxTimeComplete="7870"
 "ClientRes2xxTimeRes":4700, ClientRes3xxCount="8"
 "ClientRes2xxTimeComplete":4800, ClientRes3xxTimeRes="0"
 "ClientRes3xxCount":51, ClientRes3xxTimeComplete="12"
 "ClientRes3xxTimeRes":3, ClientRes4xxCount="0"
 "ClientRes3xxTimeComplete":15, ClientRes4xxTimeRes="0"
 "ClientRes4xxCount":0, ClientRes4xxTimeComplete="0"
 "ClientRes4xxTimeRes":0, ClientRes5xxCount="0"
 "ClientRes4xxTimeComplete":0, ClientRes5xxTimeRes="0"
 "ClientRes5xxCount":0, ClientRes5xxTimeComplete="0"
 "ClientRes5xxTimeRes":0, RequestHitRatio="10000"
 "ClientRes5xxTimeComplete":0, ByteHitRatio="8806">
 "RequestHitRatio":10000, <FileSystem>
 "ByteHitRatio":9984, <RequestHitRatio>0</RequestHitRatio>
 "FileSystem": <ByteHitRatio>0</ByteHitRatio>
 { <Outbound>0</Outbound>
 "RequestHitRatio":0, <Session>0</Session>
 "ByteHitRatio":0, </FileSystem>
 "Outbound":0, <Memory>784786700</Memory>.
 "Session":0 <SecuredMemory>0</SecuredMemory>.
 }, <Disk> ... </Disk>
 "Memory":785740769, <Session> ... </Session>
 "SecuredMemory":0, <Dims> ... </Dims>
 "Disk": { ... }, <Compression> ... </Compression>
 "Session": { ... }, <File Total="458278" Opened="15" Instance="458292"/>
 "Dims": { ... }, <Cached> ... </Cached>
 "Compression": { ... }, <CacheFileEvent> ... </CacheFileEvent>
 "FileTotal":458308, <WaitingFiles2Delete>1087593</WaitingFiles2Delete>
 "FileOpened":15, <CacheFileEvent Create=\"%u\" Swap=\"%u\" Erase=\"%u\" Purge=\"%u\" Expire=\"%u\" />
 "FileInstance":458320, <ClientHttpReqBypass Sum="8100">27</ClientHttpReqBypass>
 "Cached": { ... }, <ClientHttpReqDenied Sum="400">1</ClientHttpReqDenied>
 "CacheFileEvent": { ... }, <OriginTraffic> ... </OriginTraffic>
 "WaitingFiles2Delete":1087595, <PortBypass> ... </PortBypass>
 "ClientHttpReqBypassSum":8100, <ClientTraffic> ... </ClientTraffic>
 "ClientHttpReqBypass":27, <UrlBypass> ... </UrlBypass>
 "ClientHttpReqDeniedSum":400, </VirtualHost>
 "ClientHttpReqDenied":1, <VirtualHost> ... </VirtualHost>
 "OriginTraffic": { ... }, <VirtualHost> ... </VirtualHost>
 "PortBypass": { ... }, <VirtualHost> ... </VirtualHost>
 "ClientTraffic": { ... },
 "UrlBypass": { ... }

 },
 ...
]

Note

The values will be the same as host statistics from Name to FileSystem.

	Memory (unit: bytes) The amount of content loaded into memory.

	SecuredMemory (unit: bytes) The amount of content deleted from memory.

	Disk Disk information.

	Session Session information.

	Dims DIMS conversion statistics.

	Compression Compression statistics.

	FileTotal The total number of files.

	FileOpened The number of opened local files.

	FileInstance The number of caching files.

	Cached Caching information.

	CacheFileEvent A caching file event.

	WaitingFiles2Delete The number of files pending deletion.

	ClientHttpReqBypass The number of bypassed client HTTP requests.

	ClientHttpReqDenied The number of denied HTTP requests.

	OriginTraffic Origin server traffic statistics.

	PortBypass Port bypass traffic statistics.

	ClientTraffic Client traffic statistics.

	UrlBypass HTTP traffic statistics bypassed to the origin server via URL matching or <BypassNoCacheRequest>.

Note

These statistics are only provided in five-minute increments.

	ClientHttpReqBypassSum The total number of bypassed HTTP requests.

	ClientHttpReqDeniedSum The total number of denied HTTP requests.

Disk Statistics

Provides disk statistics used by virtual hosts.

"Disk": <Disk>
{ <TotalSize>22003701435</TotalSize>
 "TotalSize":22004057982, <Create>1</Create>
 "Create":0, <Open>10</Open>
 "Open":1, <Delete>0</Delete>
 "Delete":0, <ReadCount>9</ReadCount>
 "ReadCount":1, <ReadSize>735726</ReadSize>
 "ReadSize":104744, <WriteCount>1</WriteCount>
 "WriteCount":0, <WriteSize>157145</WriteSize>
 "WriteSize":0, <Distribution
 "Distribution": U1K="45725"
 { U2K="192523"
 "U1K="45725, U4K="137055"
 "U2K="192523, U8K="39740"
 "U4K="137055, U16K="13408"
 "U8K="39740, U32K="12303"
 "U16K="13408, U64K="11462"
 "U32K="12303, U128K="2560"
 "U64K="11462, U256K="22"
 "U128K="2560, U512K="0"
 "U256K="22, U1M="45725"
 "U512K="0, U2M="192523"
 "U1M="45725, U4M="137055"
 "U2M="192523, U8M="39740"
 "U4M="137055, U16M="13408"
 "U8M="39740, U32M="12303"
 "U16M="13408, U64M="11462"
 "U32M="12303, U128M="2560"
 "U64M="11462, U256M="22"
 "U128M="2560, U512M="0"
 "U256M="22, U1G="0"
 "U512M="0, U2G="0"
 "U1G="0, U4G="0"
 "U2G="0, U8G="0"
 "U4G="0, U16G="0"
 "U8G="0, O16G="0" />
 "U16G":0, </Disk>
 "O16G":0

 }
}

	TotalSize (unit: bytes) The total size of local files.

	Create The number of created local files.

	Open The number of opened local files.

	Delete The number of deleted local files.

	ReadCount The number of times a local file is read.

	ReadSize (unit: bytes) The total size of read local files.

	WriteCount The number of times a local file is written.

	WriteSize (unit: bytes) The total size of written local files.

	Distribution Distribution of local files based on size.
	U1K The number of files under 1 KB.

	U2K The number of files under 2 KB.

	U4K The number of files under 4 KB.

	U8K The number of files under 8 KB.

	U16K The number of files under 16 KB.

	U32K The number of files under 32 KB.

	U64K The number of files under 64 KB.

	U128K The number of files under 128 KB.

	U256K The number of files under 256 KB.

	U512K The number of files under 512 KB.

	U1M The number of files under 1 MB.

	U2M The number of files under 2 MB.

	U4M The number of files under 4 MB.

	U8M The number of files under 8 MB.

	U16M The number of files under 16 MB.

	U32M The number of files under 32 MB.

	U64M The number of files under 64 MB.

	U128M The number of files under 128 MB.

	U256M The number of files under 256 MB.

	U512M The number of files under 512 MB.

	U1G The number of files under 1 GB.

	U2G The number of files under 2 GB.

	U4G The number of files under 4 GB.

	U8G The number of files under 8 GB.

	U16G The number of files under 16 GB.

	O16G The number of files over 16 GB.

Session Statistics

Provides the session statistics.

"Session": <Session
{ Client="30"
 "Client":30, ActiveClient="20"
 "ActiveClient":20, Origin="12"
 "Origin":12, ActiveOrigin="7" />
 "ActiveOrigin":7
},

	Client The number of total HTTP client sessions.

	ActiveClient The number of transmitting sessions among HTTP clients.

	Origin The number of total origin server sessions.

	ActiveOrigin The number of transmitting sessions among origin server sessions.

DIMS Statistics

Provides DIMS performance statistics.

"Dims": <Dims
{ Requests="30"
 "Requests": 30, Converted="29"
 "Converted": 29, Failed="1"
 "Failed": 1, AvgSrcSize="1457969"
 "AvgSrcSize": 1457969, AvgDestSize="598831"
 "AvgDestSize": 598831, AvgTime="34" />
 "AvgTime": 34
},

	Requests The number of conversion requests.

	Converted The number of conversion successes.

	Failed The number of conversion failures.

	AvgSrcSize (unit: bytes) The average size of source images.

	AvgDestSize (unit: bytes) The average size of converted images.

	AvgTime (unit: ms) The elapsed time for conversion.

Compression Statistics

Provides compression performance statistics.

"Compression": <Compression
{ Requests="30"
 "Requests": 30, Converted="29"
 "Converted": 29, Failed="1"
 "Failed": 1, AvgSrcSize="1457969"
 "AvgSrcSize": 1457969, AvgDestSize="598831"
 "AvgDestSize": 598831, AvgTime="34" />
 "AvgTime": 34
},

	Requests The number of compression requests.

	Converted The number of compression statistics.

	Failed The number of compression failures.

	AvgSrcSize (unit: bytes) The average size of source files.

	AvgDestSize (unit: bytes) The average size of compressed files.

	AvgTime (unit: ms) The elapsed time for compression.

Origin Server Statistics

Provides statistics for the traffic between STON and the origin server.

"OriginTraffic": <OriginTraffic>
{ <HttpReqCount Sum="600">2</HttpReqCount>
 "HttpReqCountSum":0, <HttpReqHeaderSize>3238</HttpReqHeaderSize>
 "HttpReqCount":0, <HttpReqBodySize>0</HttpReqBodySize>
 "HttpReqHeaderSize":269, <HttpResHeaderSize>2020</HttpResHeaderSize>
 "HttpReqBodySize":0, <HttpResBodySize>104894</HttpResBodySize>
 "HttpResHeaderSize":169, <Response>
 "HttpResBodySize":0, <ResTotal>
 "Response": <Count Sum="8100">13</Count>
 { <Completed Sum="8100">12</Completed>
 "ResTotal": <TimeRes>1553</TimeRes>
 { <TimeComplete>6630</TimeComplete>
 "CountSum":0, </ResTotal>
 "Count":1, <Res2xx>
 "CompletedSum":0, <Count Sum="8100">1</Count>
 "Completed":1, <Completed Sum="8100">1</Completed>
 "TimeRes":3300, <TimeRes>3300</TimeRes>
 "TimeComplete":3300 <TimeComplete>69300</TimeComplete>
 }, </Res2xx>
 "Res2xx": <Res3xx>
 { <Count Sum="8100">12</Count>
 "CountSum":0, <Completed Sum="8100">11</Completed>
 "Count":0, <TimeRes>1408</TimeRes>
 "CompletedSum":0, <TimeComplete>1408</TimeComplete>
 "Completed":0, </Res3xx>
 "TimeRes":0, <Res4xx>
 "TimeComplete":0 <Count Sum="8100">0</Count>
 }, <Completed Sum="8100">0</Completed>
 "Res3xx": <TimeRes>0</TimeRes>
 { <TimeComplete>0</TimeComplete>
 "CountSum":0, </Res4xx>
 "Count":1, <Res5xx>
 "CompletedSum":0, <Count Sum="8100">0</Count>
 "Completed":1, <Completed Sum="8100">0</Completed>
 "TimeRes":3300, <TimeRes>0</TimeRes>
 "TimeComplete":3300 <TimeComplete>0</TimeComplete>
 }, </Res5xx>
 "Res4xx": <ConnectTimeout Sum="8100">0</ConnectTimeout>
 { <ReceiveTimeout Sum="8100">0</ReceiveTimeout>
 "CountSum":0, <Close Sum="8100">0</Close>
 "Count":0, </Response>
 "CompletedSum":0, <Connect>
 "Completed":0, <Count>0</Count>
 "TimeRes":0, <AvgDNSQueryTime>0</AvgDNSQueryTime>
 "TimeComplete":0 <AvgConnTime>0</AvgConnTime>
 }, </Connect>
 "Res5xx": </OriginTraffic>
 {
 "CountSum":0,
 "Count":0,
 "CompletedSum":0,
 "Completed":0,
 "TimeRes":0,
 "TimeComplete":0
 },
 "ConnectTimeoutSum":0,
 "ConnectTimeout":0,
 "ReceiveTimeoutSum":0,
 "ReceiveTimeout":0,
 "CloseSum":0,
 "Close":0
 },
 "Connect":
 {
 "Count":0,
 "AvgDNSQueryTime":0,
 "AvgConnTime":0
 }
},

	HttpReqCount The number of HTTP requests sent to the origin server.

	HttpReqHeaderSize (unit: bytes) The size of the HTTP header sent to the origin server.

	HttpReqBodySize (unit: bytes) The size of the HTTP body sent to the origin server.

	HttpResHeaderSize (unit: bytes) The size of the HTTP header received by the origin server.

	HttpResBodySize (unit: bytes) The size of the HTTP body received by the origin server.

	Response The responses from the origin server.

	ResXXX The statistics for the type of response (2xx, 3xx, 4xx, 5xx, total).

	Count The number of responses.

	Completed The number of properly transferred HTTP transactions.

	TimeRes The HTTP response time.

	TimeComplete The completion time for HTTP transactions.

	ConnectTimeout The number of connection failures.

	ReceiveTimeout The number of transmission delays.

	Close The number of times the origin server closes the socket during transmissions.

	Connect Origin server connection statistics.

	Count The number of connections.

	AvgDNSQueryTime (unit: 0.01 ms) The average DNS query time.

	AvgConnTime (unit: 0.01 ms) The average connection time (from TCP SYN transmission to TCP SYN ACK reception).

Note

These statistics are only provided in five-minute increments.

	HttpReqCountSum The total number of HTTP requests.

	CountSum The total number of HTTP responses.

	CompletedSum The total number of completed HTTP transactions.

	ConnectTimeoutSum The total number of origin server connection failures.

	ReceiveTimeoutSum The total number of origin server transmission delays.

	CloseSum The total number of connections closed by the origin server.

Port Bypass Statistics

Provides statistics on traffic from <PortBypass>

"PortBypass": <PortBypass SrcPort="1935" DestPost="1935">
[<Session>0</Session>
 { <Hit Established="0"
 "SrcPort":1935, "DestPort":1935, "Session":0, ClientClosed="0"
 "Hit": OriginClosed="0"
 { OriginCT="0" />
 "Established":0, "ClientClosed":0, <ClientTraffic In="0" Out="0"/>
 "OriginClosed":0, "OriginCT":0 <OriginTraffic In="0" Out="0"/>
 }, </PortBypass>
 "ClientTraffic": { "In":0, "Out":0 }, <PortBypass SrcPort="1936" DestPost="1936">
 "OriginTraffic": { "In":0, "Out":0 } <Session>17</Session>
 }, ...
 { </PortBypass>
 "SrcPort":1936, "DestPort":1936, "Session":17,
 ...
 }
],

	SrcPort/DestPort The bypassed STON/origin server port.

	Session The number of currently connected sessions.

	Hit Bypass connection statistics.
	Established The number of established connections.

	ClientClosed The number of connections closed by clients.

	OriginClosed The number of connections closed by the origin server.

	OriginCT The number of origin server connection failures.

	ClientTraffic (unit: bytes) Client traffic (In=Inbound, Out=Outbound).

	OriginTraffic (unit: bytes) Origin server traffic (In=Inbound, Out=Outbound).

Client Statistics

Client traffic can be portrayed in Traffic in multiple ways depending on the statistics configuration for each directory. If directory statistics have not been configured, all traffic will be counted as the root (/) directory. If they have been configured, only the root directory and directories with traffic will be displayed.

"ClientTraffic": <ClientTraffics Depth="0" Accum="OFF" HttpsTraffic="OFF">
{ <TrafficCount>1</TrafficCount>
 "Depth":0, <Traffic RequestHitRatio="0">
 "Accum":"OFF", <Path>/</Path>
 "HttpsTraffic":"OFF", <HttpReqCount Sum="0">0</HttpReqCount>
 "TrafficCount":1, <HttpReqHeaderSize>4113</HttpReqHeaderSize>
 "Traffic": <HttpReqBodySize>0</HttpReqBodySize>
 [<HttpResHeaderSize>3066</HttpResHeaderSize>
 { <HttpResBodySize>892871</HttpResBodySize>
 "RequestHitRatio" : 9984, <Response>
 "Path":"/", <ResTotal>
 "HttpReqCountSum":0, <Count Sum="0">18</Count>
 "HttpReqCount":100, <Completed Sum="0">18</Completed>
 "HttpReqHeaderSize":13968, <TimeRes>666</TimeRes>
 "HttpReqBodySize":0, <TimeComplete>4377</TimeComplete>
 "HttpResHeaderSize":5654, </ResTotal>
 "HttpResBodySize":104744, <Res2xx>
 "Response": <Count Sum="0">10</Count>
 { <Completed Sum="0">10</Completed>
 "ResTotal": <TimeRes>1200</TimeRes>
 { <TimeComplete>7870</TimeComplete>
 "CountSum":0, </Res2xx>
 "Count":52, <Res3xx>
 "CompletedSum":0, <Count Sum="0">8</Count>
 "Completed":52, <Completed Sum="0">8</Completed>
 "TimeRes":94, <TimeRes>0</TimeRes>
 "TimeComplete":107 <TimeComplete>12</TimeComplete>
 }, </Res3xx>
 "Res2xx": <Res4xx>
 { <Count Sum="0">0</Count>
 "CountSum":0, <Completed Sum="0">0</Completed>
 "Count":1, <TimeRes>0</TimeRes>
 "CompletedSum":0, <TimeComplete>0</TimeComplete>
 "Completed":1, </Res4xx>
 "TimeRes":4700, <Res5xx>
 "TimeComplete":4800 <Count Sum="0">0</Count>
 }, <Completed Sum="0">0</Completed>
 "Res3xx": <TimeRes>0</TimeRes>
 { <TimeComplete>0</TimeComplete>
 "CountSum":0, </Res5xx>
 "Count":51, </Response>
 "CompletedSum":0, <SSL RecvSize="0" SendSize="0"/>
 "Completed":51, <RequestHit
 "TimeRes":3, TCP_NONE="0"
 "TimeComplete":15 TCP_HIT="0"
 }, TCP_IMS_HIT="0"
 "Res4xx": TCP_REFRESH_HIT="0"
 { TCP_REF_FAIL_HIT="0"
 "CountSum":0, TCP_NEGATIVE_HIT="0"
 "Count":0, TCP_REDIRECT_HIT="0"
 "CompletedSum":0, TCP_MISS="0"
 "Completed":0, TCP_REFRESH_MISS="0"
 "TimeRes":0, TCP_CLIENT_REFRESH_MISS="0"
 "TimeComplete":0 TCP_DENIED="0"
 }, TCP_ERROR="0"/>
 "Res5xx": <RequestHitSum
 { TCP_NONE="0"
 "CountSum":0, TCP_HIT="0"
 "Count":0, TCP_IMS_HIT="0"
 "CompletedSum":0, TCP_REFRESH_HIT="0"
 "Completed":0, TCP_REF_FAIL_HIT="0"
 "TimeRes":0, TCP_NEGATIVE_HIT="0"
 "TimeComplete":0 TCP_REDIRECT_HIT="0"
 } TCP_MISS="0"
 }, TCP_REFRESH_MISS="0"
 "SSL": TCP_CLIENT_REFRESH_MISS="0"
 { TCP_DENIED="0"
 "RecvSize":0, TCP_ERROR="0"/>
 "SendSize":0 </Traffic>
 }, <FileSystem>
 "RequestHit": <GetAttr
 { TimeRes="0"
 "TCP_NONE":0, FileCount="0"
 "TCP_HIT":0, DirCount="0"
 "TCP_IMS_HIT":0, FailCount="0">0</GetAttr>
 "TCP_REFRESH_HIT":0, <Open TimeRes="0">0</Open>
 "TCP_REF_FAIL_HIT":0, <Read
 "TCP_NEGATIVE_HIT":0, TimeRes="0"
 "TCP_REDIRECT_HIT":0, BufferSize="0"
 "TCP_MISS":0, BufferFilled="0">0</Read>
 "TCP_REFRESH_MISS":0, <RequestHit
 "TCP_CLIENT_REFRESH_MISS":0, TCP_NONE="0"
 "TCP_DENIED":0, TCP_HIT="0"
 "TCP_ERROR":0 TCP_IMS_HIT="0"
 }, TCP_REFRESH_HIT="0"
 "RequestHitSum": TCP_REF_FAIL_HIT="0"
 { TCP_NEGATIVE_HIT="0"
 "TCP_NONE":0, TCP_REDIRECT_HIT="0"
 "TCP_HIT":0, TCP_MISS="0"
 "TCP_IMS_HIT":0, TCP_REFRESH_MISS="0"
 "TCP_REFRESH_HIT":0, TCP_CLIENT_REFRESH_MISS="0"
 "TCP_REF_FAIL_HIT":0, TCP_DENIED="0"
 "TCP_NEGATIVE_HIT":0, TCP_ERROR="0"/>
 "TCP_REDIRECT_HIT":0, <RequestHitSum
 "TCP_MISS":0, TCP_NONE="0"
 "TCP_REFRESH_MISS":0, TCP_HIT="0"
 "TCP_CLIENT_REFRESH_MISS":0, TCP_IMS_HIT="0"
 "TCP_DENIED":0, TCP_REFRESH_HIT="0"
 "TCP_ERROR":0 TCP_REF_FAIL_HIT="0"
 }, TCP_NEGATIVE_HIT="0"
 "FileSystem": TCP_REDIRECT_HIT="0"
 { TCP_MISS="0"
 "GetAttr" : TCP_REFRESH_MISS="0"
 { TCP_CLIENT_REFRESH_MISS="0"
 "TimeRes" : 0, TCP_DENIED="0"
 "FileCount" : 0, TCP_ERROR="0"/>
 "DirCount" : 0, </FileSystem>
 "FailCount" : 0, </ClientTraffics>
 "TotalCount" : 0
 },
 "Open" :
 {
 "TimeRes" : 0,
 "Count" : 0
 },
 "Read" :
 {
 "TimeRes" : 0,
 "BufferSize" : 0,
 "BufferFilled" : 0,
 "Count" : 0
 },
 "RequestHit":
 {
 "TCP_NONE":0,
 "TCP_HIT":0,
 "TCP_IMS_HIT":0,
 "TCP_REFRESH_HIT":0,
 "TCP_REF_FAIL_HIT":0,
 "TCP_NEGATIVE_HIT":0,
 "TCP_REDIRECT_HIT":0,
 "TCP_MISS":0,
 "TCP_REFRESH_MISS":0,
 "TCP_CLIENT_REFRESH_MISS":0,
 "TCP_DENIED":0,
 "TCP_ERROR":0
 },
 "RequestHitSum":
 {
 "TCP_NONE":0,
 "TCP_HIT":0,
 "TCP_IMS_HIT":0,
 "TCP_REFRESH_HIT":0,
 "TCP_REF_FAIL_HIT":0,
 "TCP_NEGATIVE_HIT":0,
 "TCP_REDIRECT_HIT":0,
 "TCP_MISS":0,
 "TCP_REFRESH_MISS":0,
 "TCP_CLIENT_REFRESH_MISS":0,
 "TCP_DENIED":0,
 "TCP_ERROR":0
 }
 }
 }
]
}

	Depth The directory depth for statistics to be collected.

	Accum Whether or not directory statistics are accumulated in parent directories.

	HttpsTraffic Whether or not HTTPS traffic is included in HTTP traffic.

	TrafficCount The aggregated traffic count.

	Traffic Statistics for each directory. The root (/) always has traffic.
	Path The service directory.

	HttpReqCount (unit: bytes) The number of HTTP requests sent by clients.

	HttpReqHeaderSize (unit: bytes) The size of HTTP request headers sent by clients.

	HttpReqBodySize (unit: bytes) The size of HTTP request bodies sent by clients.

	HttpResHeaderSize (unit: bytes) The size of HTTP response headers sent by STON.

	HttpResBodySize (unit: bytes) The size of HTTP response bodies sent by STON.

	Response Responses sent by STON.
	Count The number of responses.

	Completed The number of properly completed HTTP transactions.

	TimeRes The HTTP response time.

	TimeComplete The HTTP transaction completion time.

	SSL (unit: bytes) HTTPS traffic (RecvSize=received size, SendSize=transmitted size).

	RequestHit The cache HIT result.

	FileSystem FileSystem access.
	GetAttr The getattr function call count and response time (FileCount: File response, DirCount: Dir response, FailCount: failure response).

	Open The open function call count and response time.

	Read The read function call count, response time, requested size (BufferSize), and response size (BufferFilled).

	RequestHit (File I/O access) The cache HIT result.

Note

These statistics are only provided in five-minute increments.

	HttpReqCountSum The total number of HTTP requests.

	CountSum The total number of HTTP responses.

	CompletedSum The total number of completed HTTP transactions.

	RequestHitSum The cache HIT result.

View

View is a method that ties multiple virtual hosts into one to extract statistics. The concept came from viewing multiple tables as one table in a database. As shown below, the setup is very simple.

vhosts.xml

<Vhosts>
 <Vhost> ... </Vhost>
 <Vhost> ... </Vhost>
 ... (omitted) ...
 <View Name="SK">
 <Vhost>...</Vhost>
 <Vhost>...</Vhost>
 </View>
 <View Name="KT">
 <Vhost>...</Vhost>
 <Vhost>...</Vhost>
 <Vhost>...</Vhost>
 </View>
 <View Name="LG">
 <Vhost>...</Vhost>
 <Vhost>...</Vhost>
 </View>
</Vhosts>

View can even be set up with virtual hosts that don’t exist. The following are the formats that View provides statistics in.

- Realtime XML/JSON
- SNMP - cache(1.3.6.1.4.1.40001.1.4).10 ~ 12

Let’s explore an example where View can be used. Say there are three administrators running communities for their favorite sports: baseball.com, basketball.com, and football.com.

vhosts.xml

<Vhosts>
 <Vhost Name="baseball.com"> ... </Vhost>
 <Vhost Name="basketball.com"> ... </Vhost>
 <Vhost Name="football.com"> ... </Vhost>
</Vhosts>

They decide to come together to open a combined sports community service, choosing sports.com as the domain name to encompass all the different sports. The objectives that must be met by the development/management team are as follows.

	The combined service must be provided through sports.com.

	The existing domains and services must be maintained for the existing users.

	The development teams must be combined. The management teams must be combined.

	Only the home page should be developed, connecting to existing services via links.

To realistically meet these demands, the development team decides to specify the existing domains as part of the first directory, as shown below.

Existing services
http://baseball.com/standing/list.html
http://basketball.com/stats/2014/view.html
http://football.com/player/messi.php

Combined service
http://sports.com/baseball/standing/list.html
http://sports.com/basketball/stats/2014/view.html
http://sports.com/football/player/messi.php

This can easily be configured using the URL preprocessor.

vhosts.xml

<Vhosts>
 <Vhost Name="baseball.com"> ... </Vhost>
 <Vhost Name="basketball.com"> ... </Vhost>
 <Vhost Name="football.com"> ... </Vhost>
 <URLRewrite>
 <Pattern>sports.com/(.*)/(.*)</Pattern>
 <Replace>#1.com/#2</Replace>
 </URLRewrite>
</Vhosts>

The newly merged management team must now monitor not only their individual services but also the combined service (e.g. traffic, session, response codes). Most administrators familiar with SNMP will set up View to obtain these combined statistics.

[image: ../_images/view1.png]

vhosts.xml

<Vhosts>
 <Vhost Name="baseball.com"> ... </Vhost>
 <Vhost Name="basketball.com"> ... </Vhost>
 <Vhost Name="football.com"> ... </Vhost>
 <URLRewrite>
 <Pattern>sports.com/(.*)/(.*)</Pattern>
 <Replace>#1.com/#2</Replace>
 </URLRewrite>
 <View Name="sports.com">
 <Vhost>baseball.com</Vhost>
 <Vhost>basketball.com</Vhost>
 <Vhost>football.com</Vhost>
 </View>
</Vhosts>

As seen in the above example, the combination of URL Rewrite and View can effectively tie existing sites together into a single service.

View Statistics

Provides statistics identical to the virtual host statistics, with the only difference being the names of the tags, as shown below.

"View": <View ...>
[...
 { ... }, </View>
 { ... }, <View> ... </View>
] <View> ... </View>

Checking the Virtual Host List

The virtual host list can be checked.

http://127.0.0.1:10040/monitoring/vhostslist

The results are returned in JSON format.

{
 "version": "2.0.0",
 "method": "vhostslist",
 "status": "OK",
 "result": ["www.example.com","www.winesoft.com", "site1.com"]
}

Caching Information

The status of files being cached can be monitored. Generally, files can be distinguished by URLs, but if the same URL can have different options (e.g. Accept-Encoding), then there may also be multiple files.

http://127.0.0.1:10040/monitoring/fileinfo?url=example.com/sample.dat

The results are returned in JSON format.
The following is the result of looking up the information of a /sample.dat file.

{
 "version": "2.0.0",
 "method": "fileinfo",
 "status": "OK",
 "result":
 [
 {
 "URI": "/sample.dat",
 "Accept-Encoding": "N",
 "RefCount": 0,
 "Disk-Index": 0,
 "Size": 2100267,
 "FID": 24267,
 "LocalPath": "/cache1/example.com/000i/q3.bin",
 "File-Opened ": "N",
 "File-Updating": "-",
 "Downloader-Count": "0",
 "LastAccess": "[2012.09.03 14:29:50, -2]",
 "UpdateTime": "[2012.09.03 13:53:43, -2169]",
 "TTL-Left": "[2012.10.03 13:53:43, 2589831]",
 "ResponseCode": 200,
 "ContentType": "text/plain",
 "LastModifiedTime": "[2010.11.22 20:31:47, -56224685]",
 "ExpireTime": "[0, 0]",
 "CacheControl": "not-specified",
 "ETag": "502dd614:200c2b",
 "CustomTTL": 0,
 "NoMoreExist": "N",
 "LocalFileExist": "Y",
 "SmallFile": "N",
 "State": "Cached",
 "Deleted": "N",
 "AddedSize": "Y",
 "TransferEncoding": "N",
 "Compression": "-",
 "Purge": "N",
 "Ignore-IMS ": "N",
 "Redirect-Location ": "-",
 "Content-Disposition ": "-",
 "NoCache": "N"
 }
]
}

	URI The file URI.

	Accept-Encoding (“Y” or “N”) “Y” if Accept-Encoding is supported.

	RefCount The file reference count.

	Size (bytes) The file size.

	Disk-Index (starts from 0) The saved disk index.

	FID The file ID.

	LocalPath The local path.

	File-Opened (“Y” or “N”) “Y” if a local file is opened.

	File-Updating Specifies the pointer to the updated object if a file is being updated.

	Downloader-Count The number of sessions downloading this file from the origin server.

	LastAccess (last accessed time, last accessed time - current time) [2012.09.03 14:29:50, -2] would mean that the file was last accessed 2 seconds before the current time, on 2012.09.03 14:29:50.

	UpdateTime (modified time, modified time - current time) The last time the file was modified. A 304 Not Modified response also updates the time.

	TTL-Left (expiration time, expiration time - current time) The time left until the content expires. The value is positive if there is still TTL left, and negative if already expired.

	ResponseCode The origin server response code.

	ContentType The MIME Type.

	LastModifiedTime (Last Modified Time, Last Modified Time - current time) The Last Modified Time sent by the origin server. If the origin server did not send this value, it will return zero.

	ExpireTime (Expire Time, Expire Time - current time) The Expire Time sent by the origin server. If the origin server did not send this value, it will return zero.

	CacheControl (“no-cache” or “not-specified” or an integer) The Cache-Control value sent by the origin server.

	ETag The ETag created by STON.

	CustomTTL Custom TTL. If not configured, zero is returned.

	NoMoreExist (“Y” or “N”) “Y” if file is pending deletion.

	LocalFileExist (“Y” or “N”) “Y” if the file exists locally (files not 200 OK are always “Y”).

	SmallFile (“Y” or “N”) “Y” is the file is considered a small file (for development purposes).

	State (“Not Init” or “Cached” or “Error”) The file status.

	Deleted (“Y” or “N”) “Y” if the file is deleted (for development purposes).

	AddedSize (“Y” or “N”) “Y” if the size is reflected in the statistics (for development purposes).

	TransferEncoding (“Y” or “N”) “Y” if Transfer-Encoding is supported.

	Compression The compression method.

	Purge (“Y” or “N”) “Y” if purged.

	Ignore-IMS (“Y” or “N”) “Y” if not configured to send an If-Modified-Since header during updates.

	Redirect-Location The Location header value.

	Content-Disposition The Content-Disposition header value.

	NoCache (“Y” or “N”) “Y” if the origin server responds with no-cache.

Log Trace

Receives the log in real time while it’s being recorded. Access, Origin, and Monitoring logs must specify a virtual host.

http://127.0.0.1:10040/monitoring/logtrace/info
http://127.0.0.1:10040/monitoring/logtrace/deny
http://127.0.0.1:10040/monitoring/logtrace/sys
http://127.0.0.1:10040/monitoring/logtrace/originerror
http://127.0.0.1:10040/monitoring/logtrace/access?vhost=www.site1.com
http://127.0.0.1:10040/monitoring/logtrace/origin?vhost=www.site1.com
http://127.0.0.1:10040/monitoring/logtrace/monitoring?vhost=www.site1.com

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STON Edge Server 2.3.4 documentation

Chapter 11. SNMP

This chapter will explain the Simple Network Management Protocol (SNMP). All values in Chapter 10. Monitoring & Statistics can also be provided by SNMP. Moreover, SNMP can provide more subdivided time units and more detailed system status information. Real-time statistics and statistics averaged over a number of minutes (up to 60) per each virtual host can be provided.

	No additional package is required.

	SNMP is not run separately.

	Supports SNMP v1 and v2c.

Variables

Values that can be changed by a configuration or intentionally by the administrator will be specified as [variable name]. For example, if multiple disks exist, each disk will be represented by a number, assigned in order starting from one. This variable will be labeled as [diskIndex].

	
	[diskIndex]

	Stands for the disks configured in storage.

server.xml - <Server><Cache>

<Storage>
 <Disk>/cache1</Disk>
 <Disk>/cache2</Disk>
 <Disk>/cache3</Disk>
</Storage>

In the above environment with three configured disks, /cache1 has a [diskIndex] of 1 while /cache3 has a [diskIndex] of 3. For example, the OID that refers to the entire volume of /cache1 is system.diskInfo.diskInfoTotalSize.1 (1.3.6.1.4.1.40001.1.2.18.1.3.1). The last .1 refers to the first disk.

	
	[vhostIndex]

	Automatically assigned when virtual hosts are loaded.

vhosts.xml

<Vhosts>
 <Vhost Status="Active" Name="kim.com"> ... </Vhost>
 <Vhost Status="Active" Name="lee.com"> ... </Vhost>
 <Vhost Status="Active" Name="park.com" StaticIndex="10300"> ... </Vhost>
</Vhosts>

In the example above, the first three virtual hosts loaded will be assigned a [vhostIndex] in order starting from 1. The virtual host will remember this [vhostIndex], and the indexes will not change even if virtual hosts are deleted. If virtual host deletion and loading take place at the same time, deletion will occur first, and the new new loaded virtual host will be assigned the empty [vhostIndex].

[image: ../_images/snmp_vhostindex.png]
Behavior of [vhostIndex]

	
	[diskMin] , [vhostMin]

	Refers to time in minutes. A value of 5 refers to an average over the last 5 minutes, while a value of 60 refers to an average over the last 60 minutes. This value has a range of 0 to 60, where 0 refers to real-time (1 second) data.

SNMP uses table structures for items with values that can change dynamically. For example, the number of values in “total disk size” can change with the number of disks, so a table is used. STON provides virtual host statistics in minute increments, allowing for more complex expressions such as “[vhostMin] . [vhostIndex]”.

This expression allows you to request statistics for each virtual host at your desired time increment, but because there are two variables, it is hard to represent in a table. This problem can be solved by setting a default value for [vhostMin] for SNMPWalk to run.

Activation

SNMP behavior and ACL can be configured in global settings (server.xml).

server.xml - <Server><Host>

<SNMP Port="161" Status="Inactive">
 <Allow>192.168.5.1</Allow>
 <Allow>192.168.6.0/24</Allow>
</SNMP>

	
	<SNMP>

	SNMP behavior can be configured using these properties.

	Port (default: 161) SNMP service port.

	Status (default: Inactive) Activates SNMP when set to Active.

	
	<Allow>

	Configures IP addresses that allow SNMP access. Designated IP, designated IP range, bitmask, and subnet forms are supported. If the connected socket is not one of the approved IPs, no response is returned.

Virtual Host/View Variables

The number of virtual host/View variables and default time (minutes) provided by SNMP can be configured.

server.xml - <Server><Host>

<SNMP VHostCount=0, VHostMin=5 ViewCount=0, ViewMin=5 />

	VHostCount (default: 0) If set to 0, only existing virtual hosts respond. If greater than 0, all configured virtual hosts will respond whether they exist or not.

	ViewCount (default: 0) Applies to View. (Same as VHostCount)

	VHostMin (default: 5 min, maximum: 60 min) Configures the value of [vhostMin]. Has a range of 0 to 60, with 0 resulting in real-time data and 1~60 resulting in an average over the set amount of time.

	ViewMin (default: 0) Applies to View. (Same as VHostMin)

In an example with three configured virtual hosts, SNMPWalk’s behavior can differ.

	If VHostCount=0

SNMPv2-SMI::enterprises.40001.1.4.2.1.2.1 = STRING: "web.winesoft.co.kr"
SNMPv2-SMI::enterprises.40001.1.4.2.1.2.2 = STRING: "img.winesoft.co.kr"
SNMPv2-SMI::enterprises.40001.1.4.2.1.2.3 = STRING: "vod.winesoft.co.kr"

	If VHostCount=5

SNMPv2-SMI::enterprises.40001.1.4.2.1.2.1 = STRING: "web.winesoft.co.kr"
SNMPv2-SMI::enterprises.40001.1.4.2.1.2.2 = STRING: "img.winesoft.co.kr"
SNMPv2-SMI::enterprises.40001.1.4.2.1.2.3 = STRING: "vod.winesoft.co.kr"
SNMPv2-SMI::enterprises.40001.1.4.2.1.2.4 = ""
SNMPv2-SMI::enterprises.40001.1.4.2.1.2.5 = ""

Other Variables

Other variables can be configured.

server.xml - <Server><Host>

<SNMP GlobalMin="5" DiskMin="5" ConfCount="10" />

	GlobalMin (default: 5 min, maximum: 60 min) Sets the value of [globalMin].

	DiskMin (default: 5 min, maximum: 60 min) Sets the value of [diskMin].

	ConfCount (default: 10) Browses previous configuration lists. Has a range of 1 to 100. 1 will browse only the current configuration, and 2 will browse the current and previous configurations. Therefore, a value of 100 allows you to browse the current configuration and the past 99 configurations.

Community

Community can be configured to allow/deny access to the given OIDs.

server.xml - <Server><Host>

<SNMP UnregisteredCommunity="Allow">
 <Community Name="example1" OID="Allow">
 <OID>1.3.6.1.4.1.40001.1.4.1</OID>
 <OID>1.3.6.1.4.1.40001.1.4.2</OID>
 <OID>1.3.6.1.4.1.40001.1.4.4</OID>
 </Community>
 <Community Name="example2" OID="Deny">
 <OID>1.3.6.1.4.1.40001.1.4.3.1.11.11.10.1-61</OID>
 </Community>
</SNMP>

If the UnregisteredCommunity value in <SNMP> is set to “Deny”, unregistered Community requests will be blocked.

	<Community> Configures Community.
	Name The Community name.

	OID (default: Allow) Configures the access of the <OID> tags below. If set to Allow, only the <OID> tags below will be allowed access. If set to Deny, the <OID> tags below will be denied access.

Specific OID (1.3.6.1.4.1.40001.1.4.4) and ranged OID (1.3.6.1.4.1.40001.1.4.3.1.11.11.10.1-61) formats are supported. When OIDs are allowed/denied, all OIDs set below will be configured the same way.

meta

OID = 1.3.6.1.4.1.40001.1.1

Provides meta information.

	OID
	Name
	Type
	Description

	.1
	manufacture
	String
	“WineSOFT Inc.”

	.2
	software
	String
	“STON”

	.3
	version
	String
	Version

	.4
	hostname
	String
	Host Name

	.5
	state
	String
	“Healthy” or “Inactive” or “Emergency”

	.6
	uptime
	Integer
	Runtime (seconds)

	.7
	admin
	String
	<Admin> ... </Admin>

	.10
	Conf
	OID
	Conf expansion

meta.conf

OID = 1.3.6.1.4.1.40001.1.1.10

[confIndex] is set in the ConfCount property of <SNMP>. A [confIndex] of 1 always refers to the current configuration values, while 2 refers to the previous configuration values. If [confIndex] is 10, the ninth past configuration values will be returned.

	OID
	Name
	Type
	Description

	.1. [confIndex]
	ID
	Integer
	Configuration ID

	.2. [confIndex]
	Time
	Integer
	Configuration time (Unix time)

	.3. [confIndex]
	Type
	Integer
	Configuration type (0 = Unknown, 1 = STON start, 2 = /conf/reload, 3 = /conf/upload, 4 = /conf/restore)

	.4. [confIndex]
	Size
	Integer
	Configuration file size

	.5. [confIndex]
	Hash
	String
	Configuration file Hash string

	.6. [confIndex]
	Path
	String
	Saved path of the configuration file

	.7. [confIndex]
	Ver
	String
	STON version of the configuration

system

OID = 1.3.6.1.4.1.40001.1.2

Provides information about the system running STON. The [sysMin] variable can be set from 0~60 minutes, allowing either real-time or averaged data. The [sysMin] in SNMPWalk can also be set to 0 to provide current information.

	OID
	Name
	Type
	Description

	.1. [sysMin]
	cpuTotal
	Integer
	Total CPU usage (100%)

	.2. [sysMin]
	
	
	Total CPU usage (10000%)

	.3. [sysMin]
	cpuKernel
	Integer
	CPU(Kernel) usage (100%)

	.4. [sysMin]
	
	
	CPU(Kernel) usage (10000%)

	.5. [sysMin]
	cpuUser
	Integer
	CPU(User) usage (100%)

	.6. [sysMin]
	
	
	CPU(User) usage (10000%)

	.7. [sysMin]
	cpuIdle
	Integer
	CPU(Idle) usage (100%)

	.8. [sysMin]
	
	
	CPU(Idle) usage (10000%)

	.9
	memTotal
	Integer
	Total system memory (KB)

	.10. [sysMin]
	memUse
	Integer
	Used system memory (KB)

	.11. [sysMin]
	memFree
	Integer
	Free system memory (KB)

	.12. [sysMin]
	memSTON
	Integer
	Memory used by STON (KB)

	.13. [sysMin]
	memUseRatio
	Integer
	System memory usage (100%)

	.14. [sysMin]
	
	
	System memory usage (10000%)

	.15. [sysMin]
	memSTONRatio
	Integer
	STON memory usage (100%)

	.16. [sysMin]
	
	
	STON memory usage (10000%)

	.17
	diskCount
	Integer
	Disk count

	.18.1
	diskInfo
	OID
	diskInfo expansion

	.19.1
	diskPerf
	OID
	diskPerf expansion

	.20. [sysMin]
	cpuProcKernel
	Integer
	Usage of CPU(Kernel) by STON (100%)

	.21. [sysMin]
	
	
	Usage of CPU(Kernel) by STON (10000%)

	.22. [sysMin]
	cpuProcUser
	Integer
	Usage of CPU(User) by STON (100%)

	.23. [sysMin]
	
	
	Usage of CPU(User) by STON (10000%)

	.24. [sysMin]
	sysLoadAverage
	Integer
	Load Average of 1 minute (0.01)

	.25. [sysMin]
	
	
	Load Average of 5 minutes (0.01)

	.26. [sysMin]
	
	
	Load Average ot 15 minutes (0.01)

	.27. [sysMin]
	cpuNice
	Integer
	CPU(Nice) (100%)

	.28. [sysMin]
	
	
	CPU(Nice) (10000%)

	.29. [sysMin]
	cpuIOWait
	Integer
	CPU(IOWait) (100%)

	.30. [sysMin]
	
	
	CPU(IOWait) (10000%)

	.31. [sysMin]
	cpuIRQ
	Integer
	CPU(IRQ) (100%)

	.32. [sysMin]
	
	
	CPU(IRQ) (10000%)

	.33. [sysMin]
	cpuSoftIRQ
	Integer
	CPU(SoftIRQ) (100%)

	.34. [sysMin]
	
	
	CPU(SoftIRQ) (10000%)

	.35. [sysMin]
	cpuSteal
	Integer
	CPU(Steal) (100%)

	.36. [sysMin]
	
	Integer
	CPU(Steal) (10000%)

	.40. [sysMin]
	TCPSocket.Established. [globalMin]
	Integer
	Number of established TCP connections

	.41. [sysMin]
	TCPSocket.Timewait. [globalMin]
	Integer
	Number of TIME_WAIT TCP connections

	.42. [sysMin]
	TCPSocket.Orphan. [globalMin]
	Integer
	Number of orphaned TCP connections

	.43. [sysMin]
	TCPSocket.Alloc. [globalMin]
	Integer
	Number of allocated TCP connections

	.44. [sysMin]
	TCPSocket.Mem. [globalMin]
	Integer
	TCP connection memory usage

system.diskInfo

OID = 1.3.6.1.4.1.40001.1.2.18.1

Provides disk information.

	OID
	Name
	Type
	Description

	.2. [diskIndex]
	diskInfoPath
	String
	Disk path

	.3. [diskIndex]
	diskInfoTotalSize
	Integer
	Total disk size (MB)

	.4. [diskIndex]
	diskInfoUseSize
	Integer
	Disk usage (MB)

	.5. [diskIndex]
	diskInfoFreeSize
	Integer
	Free disk size (MB)

	.6. [diskIndex]
	diskInfoUseRatio
	Integer
	Disk usage ratio (100%)

	.7. [diskIndex]
	
	
	Disk usage ratio (10000%)

	.8. [diskIndex]
	diskInfoStatus
	String
	“Normal” or “Invalid” or “Unmounted”

system.diskPerf

OID = 1.3.6.1.4.1.40001.1.2.19.1

Provides disk performance status.

	OID
	Name
	Type
	Description

	.2. [diskMin] . [diskIndex]
	diskPerfReadCount
	Integer
	Successful Read count

	.3. [diskMin] . [diskIndex]
	diskPerfReadMergedCount
	Integer
	Merged Read count

	.4. [diskMin] . [diskIndex]
	diskPerfReadSectorsCount
	Integer
	Read sectors count

	.5. [diskMin] . [diskIndex]
	diskPerfReadTime
	Integer
	Elapsed Read time (ms)

	.6. [diskMin] . [diskIndex]
	diskPerfWriteCount
	Integer
	Successful Write count

	.7. [diskMin] . [diskIndex]
	diskPerfWriteMergedCount
	Integer
	Merged Write count

	.8. [diskMin] . [diskIndex]
	diskPerfWriteSectorsCount
	Integer
	Written sectors count

	.9. [diskMin] . [diskIndex]
	diskPerfWriteTime
	Integer
	Elapsed Write time (ms)

	.10. [diskMin] . [diskIndex]
	diskPerfIOProgressCount
	Integer
	Number of IO in progress

	.11. [diskMin] . [diskIndex]
	diskPerfIOTime
	Integer
	Elapsed IO time (ms)

	.12. [diskMin] . [diskIndex]
	diskPerfIOTimeWeighted
	Integer
	Elapsed IO time (ms, weighted values)

global

OID = 1.3.6.1.4.1.40001.1.3

Provides resource information (e.g. sockets, events) shared by all modules.

	
	ServerSocket

	The client-STON connection. This socket is used by STON to process client requests.

	
	ClientSocket

	The STON-origin server connection. This socket is used by STON to send requests to the origin server.

	OID
	Name
	Type
	Description

	.5
	EQ. [globalMin]
	Integer
	The number of unprocessed Events in the STON Framework

	.6
	RQ. [globalMin]
	Integer
	The number of Events saved in the recently serviced content reference queue

	.7
	waitingFiles2Write. [globalMin]
	Integer
	The number of write pending files

	.10
	ServerSocket.Total. [globalMin]
	Integer
	Total number of server sockets

	.11
	ServerSocket.Established. [globalMin]
	Integer
	Total number of connected server sockets

	.12
	ServerSocket.Accepted. [globalMin]
	Integer
	Total number of newly connected server sockets

	.13
	ServerSocket.Closed. [globalMin]
	Integer
	The number of closed server sockets

	.20
	ClientSocket.Total. [globalMin]
	Integer
	Total number of client sockets

	.21
	ClientSocket.Established. [globalMin]
	Integer
	Total number of connected client sockets

	.22
	ClientSocket.Accepted. [globalMin]
	Integer
	Total number of newly connected client sockets

	.23
	ClientSocket.Closed. [globalMin]
	Integer
	The number of closed client sockets

	.30
	ServiceAccess.Allow. [globalMin]
	Integer
	The number of allowed(Allow) sockets by ServiceAccess

	.31
	ServiceAccess.Deny. [globalMin]
	Integer
	The number of denied(Deny) sockets by ServiceAccess

cache

OID = 1.3.6.1.4.1.40001.1.4

Cache service statistics are collected and provided in detail for each virtual host.

	OID
	Name
	Type
	Description

	.1
	host
	OID
	Host (expansion)

	.2
	vhostCount
	Integer
	The number of virtual hosts

	.3.1
	vhost
	OID
	Statistics for each virtual host

	.4
	vhostIndexMax
	Integer
	Max value of [vhostIndex]. SNMPWalk works based on this value.

	.10
	viewCount
	Integer
	View count

	.11.1
	view
	OID
	Stats per View

	.12
	viewIndexMax
	Integer
	Max value of [viewIndex]. SNMPWalk works based on this value.

cache.host

OID = 1.3.6.1.4.1.40001.1.4.1

Provides information of all virtual hosts.

	OID
	Name
	Type
	Description

	.2
	name
	String
	Host name

	.3
	status
	String
	“Healthy” or “Inactive”

	.4
	uptime
	Integer
	STON runtime (seconds)

	.10
	contents
	OID
	Content information (expansion)

	.11
	traffic
	OID
	Stats (expansion)

cache.host.contents

OID = 1.3.6.1.4.1.40001.1.4.1.10

Provides statistics for content in the service for all virtual hosts.

	OID
	Name
	Type
	Description

	.1
	memory
	Integer
	Memory caching size (KB)

	.2
	filesTotalCount
	Integer
	The number of files in service

	.3
	filesTotalSize
	Integer
	Total size of files in service (MB)

	.10
	filesCountU1KB
	Integer
	The number of files smaller than 1KB

	.11
	filesCountU2KB
	Integer
	The number of files smaller than 2KB

	.12
	filesCountU4KB
	Integer
	The number of files smaller than 4KB

	.13
	filesCountU8KB
	Integer
	The number of files smaller than 8KB

	.14
	filesCountU16KB
	Integer
	The number of files smaller than 16KB

	.15
	filesCountU32KB
	Integer
	The number of files smaller than 32KB

	.16
	filesCountU64KB
	Integer
	The number of files smaller than 64KB

	.17
	filesCountU128KB
	Integer
	The number of files smaller than 128KB

	.18
	filesCountU256KB
	Integer
	The number of files smaller than 256KB

	.19
	filesCountU512KB
	Integer
	The number of files smaller than 512KB

	.20
	filesCountU1MB
	Integer
	The number of files smaller than 1MB

	.21
	filesCountU2MB
	Integer
	The number of files smaller than 2MB

	.22
	filesCountU4MB
	Integer
	The number of files smaller than 4MB

	.23
	filesCountU8MB
	Integer
	The number of files smaller than 8MB

	.24
	filesCountU16MB
	Integer
	The number of files smaller than 16MB

	.25
	filesCountU32MB
	Integer
	The number of files smaller than 32MB

	.26
	filesCountU64MB
	Integer
	The number of files smaller than 64MB

	.27
	filesCountU128MB
	Integer
	The number of files smaller than 128MB

	.28
	filesCountU256MB
	Integer
	The number of files smaller than 256MB

	.29
	filesCountU512MB
	Integer
	The number of files smaller than 512MB

	.30
	filesCountU1GB
	Integer
	The number of files smaller than 1GB

	.31
	filesCountU2GB
	Integer
	The number of files smaller than 2GB

	.32
	filesCountU4GB
	Integer
	The number of files smaller than 4GB

	.33
	filesCountU8GB
	Integer
	The number of files smaller than 8GB

	.34
	filesCountU16GB
	Integer
	The number of files smaller than 16GB

	.35
	filesCountO16GB
	Integer
	The number of files larger than 16GB

cache.host.traffic

OID = 1.3.6.1.4.1.40001.1.4.1.11

Provides cache service and traffic statistics for all virtual hosts. Traffic statistics are provided as an average of up to 60 minutes. If the time value is omitted or set to 0, statistics will be provided in real time.

	OID
	Name
	Type
	Description

	.1. [vhostMin]
	requestHitRatio
	Integer
	Request Hit Ratio (100%)

	.2. [vhostMin]
	
	
	Request Hit Ratio (10000%)

	.3. [vhostMin]
	bytesHitRatio
	Integer
	Bytes Hit Ratio (100%)

	.4. [vhostMin]
	
	
	Bytes Hit Ratio (10000%)

	.10
	origin
	OID
	Origin traffic information (expansion)

	.11
	client
	OID
	Client traffic information (expansion)

cache.host.traffic.origin

OID = 1.3.6.1.4.1.40001.1.4.1.11.10

Provides origin server traffic statistics. Origin server traffic is divided into HTTP traffic and port bypass traffic.

	OID
	Name
	Type
	Description

	.1. [vhostMin]
	inbound
	Integer
	Average traffic received from the origin server (bytes)

	.2. [vhostMin]
	outbound
	Integer
	Average traffic sent to the origin server (bytes)

	.3. [vhostMin]
	sessionAverage
	Integer
	Average origin server session count

	.4. [vhostMin]
	activesessionAverage
	Integer
	Average origin server transmitting session count

	.10
	http
	OID
	Origin server HTTP traffic information

	.10.1. [vhostMin]
	http.inbound
	Integer
	Average HTTP traffic received from the origin server (bytes)

	.10.2. [vhostMin]
	http.outbound
	Integer
	Average HTTP traffic sent to the origin server (bytes)

	.10.3. [vhostMin]
	http.sessionAverage
	Integer
	Average origin server HTTP session count

	.10.4. [vhostMin]
	http.reqHeaderSize
	Integer
	Average HTTP Header traffic sent to the origin server (bytes)

	.10.5. [vhostMin]
	http.reqBodySize
	Integer
	Average HTTP Body traffic sent to the origin server (bytes)

	.10.6. [vhostMin]
	http.resHeaderSize
	Integer
	Average HTTP Header traffic received from the origin server (bytes)

	.10.7. [vhostMin]
	http.resBodySize
	Integer
	Average HTTP Body traffic received from the origin server (bytes)

	.10.8. [vhostMin]
	http.reqAverage
	Integer
	Average number of HTTP requests sent to the origin server

	.10.9. [vhostMin]
	http.reqCount
	Integer
	Total number of HTTP requests sent to the origin server

	.10.10. [vhostMin]
	http.resTotalAverage
	Integer
	Average number of all HTTP responses received from the origin server

	.10.11. [vhostMin]
	http.resTotalCompleteAverage
	Integer
	Average number of successful HTTP transactions from the origin server

	.10.12. [vhostMin]
	http.resTotalTimeRes
	Integer
	Average elapsed time to receive a response header from the origin server (0.01 ms)

	.10.13. [vhostMin]
	http.resTotalTimeComplete
	Integer
	Average completion time of HTTP transactions from the origin server (0.01 ms)

	.10.14. [vhostMin]
	http.resTotalCount
	Integer
	Total number of all HTTP responses received from the origin server

	.10.15. [vhostMin]
	http.resTotalCompleteCount
	Integer
	Total number of successful HTTP transactions from the origin server

	.10.20. [vhostMin]
	http.res2xxAverage
	Integer
	Number of 2xx responses from the origin server

	.10.21. [vhostMin]
	http.res2xxCompleteAverage
	Integer
	Number of successful 2xx transactions from the origin server

	.10.22. [vhostMin]
	http.res2xxTimeRes
	Integer
	Average elapsed time to receive a 2xx header from the origin server (0.01 ms)

	.10.23. [vhostMin]
	http.res2xxTimeComplete
	Integer
	Average completion time of 2xx transactions from the origin server (0.01 ms)

	.10.24. [vhostMin]
	http.res2xxCount
	Integer
	Total number of 2xx responses from the origin server

	.10.25. [vhostMin]
	http.res2xxCompleteCount
	Integer
	Total number of successful 2xx transactions from the origin server

	.10.30. [vhostMin]
	http.res3xxAverage
	Integer
	Number of 3xx responses from the origin server

	.10.31. [vhostMin]
	http.res3xxCompleteAverage
	Integer
	Number of successful 3xx transactions from the origin server

	.10.32. [vhostMin]
	http.res3xxTimeRes
	Integer
	Average elapsed time to receive a 3xx header from the origin server (0.01 ms)

	.10.33. [vhostMin]
	http.res3xxTimeComplete
	Integer
	Average completion time of 3xx transactions from the origin server (0.01 ms)

	.10.34. [vhostMin]
	http.res3xxCount
	Integer
	Total number of 3xx responses from the origin server

	.10.35. [vhostMin]
	http.res3xxCompleteCount
	Integer
	Total number of successful 3xx transactions from the origin server

	.10.40. [vhostMin]
	http.res4xxAverage
	Integer
	Number of 4xx responses from the origin server

	.10.41. [vhostMin]
	http.res4xxCompleteAverage
	Integer
	Number of successful 4xx transactions from the origin server

	.10.42. [vhostMin]
	http.res4xxTimeRes
	Integer
	Average elapsed time to receive a 4xx header from the origin server (0.01 ms)

	.10.43. [vhostMin]
	http.res4xxTimeComplete
	Integer
	Average completion time of 4xx transactions from the origin server (0.01 ms)

	.10.44. [vhostMin]
	http.res4xxCount
	Integer
	Total number of 4xx responses from the origin server

	.10.45. [vhostMin]
	http.res4xxCompleteCount
	Integer
	Total number of successful 4xx transactions from the origin server

	.10.50. [vhostMin]
	http.res5xxAverage
	Integer
	Number of 5xx responses from the origin server

	.10.51. [vhostMin]
	http.res5xxCompleteAverage
	Integer
	Number of successful 5xx transactions from the origin server

	.10.52. [vhostMin]
	http.res5xxTimeRes
	Integer
	Average elapsed time to receive a 5xx header from the origin server (0.01 ms)

	.10.53. [vhostMin]
	http.res5xxTimeComplete
	Integer
	Average completion time of 5xx transactions from the origin server (0.01 ms)

	.10.54. [vhostMin]
	http.res5xxCount
	Integer
	Total number of 5xx responses from the origin server

	.10.55. [vhostMin]
	http.res5xxCompleteCount
	Integer
	Total number of successful 5xx transactions from the origin server

	.10.60. [vhostMin]
	http.connectTimeoutAverage
	Integer
	Average number of origin server connection timeouts

	.10.61. [vhostMin]
	http.receiveTimeoutAverage
	Integer
	Average number of origin server reception timeouts

	.10.62. [vhostMin]
	http.connectAverage
	Integer
	Average number of origin server connection successes

	.10.63. [vhostMin]
	http.dnsQueryTime
	Integer
	Average DNS query time when connecting to the origin server

	.10.64. [vhostMin]
	http.connectTime
	Integer
	Origin server average connection time (0.01 ms)

	.10.65. [vhostMin]
	http.connectTimeoutCount
	Integer
	Total number of origin server connection timeouts

	.10.66. [vhostMin]
	http.receiveTimeoutCount
	Integer
	Total number of origin server reception timeouts

	.10.67. [vhostMin]
	http.connectCount
	Integer
	Total number of origin server connection successes

	.10.68. [vhostMin]
	http.closeAverage
	Integer
	Average number of sockets closed by the origin server during transmission

	.10.69. [vhostMin]
	http.closeCount
	Integer
	Total number of sockets closed by the origin server during transmission

	.11
	portbypass
	OID
	Port bypass origin server traffic information

	.11.1. [vhostMin]
	portbypass.inbound
	Integer
	Average traffic received from the origin server via port bypass (bytes)

	.11.2. [vhostMin]
	portbypass.outbound
	Integer
	Average traffic sent to the origin server via port bypass (bytes)

	.11.3. [vhostMin]
	portbypass.sessionAverage
	Integer
	Average number of origin server sessions in port bypass

	.11.4. [vhostMin]
	portbypass.closedAverage
	Integer
	Average number of connections closed by the origin server during port bypass

	.11.5. [vhostMin]
	portbypass.connectTimeoutAverage
	Integer
	Average number of origin server connection timeouts during port bypass

	.11.6. [vhostMin]
	portbypass.closedCount
	Integer
	Total number of connections closed by the origin server during port bypass

	.11.7. [vhostMin]
	portbypass.connectTimeoutCount
	Integer
	Total number of origin server connection timeouts during port bypass

cache.host.traffic.client

OID = 1.3.6.1.4.1.40001.1.4.1.11.11

Provides client traffic statistics. Client traffic is divided into HTTP traffic, SSL traffic, and port bypass traffic. SNMP does not provide statistics for each directory. Even if directory statistics are configured, the data will be accumulated before being provided.

	OID
	Name
	Type
	Description

	.1. [vhostMin]
	inbound
	Integer
	Average traffic received from clients (bytes)

	.2. [vhostMin]
	outbound
	Integer
	Average traffic sent to clients (bytes)

	.3. [vhostMin]
	sessionAverage
	Integer
	Average client session count

	.4. [vhostMin]
	activesessionAverage
	Integer
	Average client transmitting session count

	.10
	http
	OID
	Client HTTP traffic information

	.10.1. [vhostMin]
	http.inbound
	Integer
	Average HTTP traffic received from clients (bytes)

	.10.2. [vhostMin]
	http.outbound
	Integer
	Average HTTP traffic sent to clients (bytes)

	.10.3. [vhostMin]
	http.sessionAverage
	Integer
	Average client HTTP session count

	.10.4. [vhostMin]
	http.reqHeaderSize
	Integer
	Average HTTP Header traffic received from clients (bytes)

	.10.5. [vhostMin]
	http.reqBodySize
	Integer
	Average HTTP Body traffic received from clients (bytes)

	.10.6. [vhostMin]
	http.resHeaderSize
	Integer
	Average HTTP Header traffic sent to clients (bytes)

	.10.7. [vhostMin]
	http.resBodySize
	Integer
	Average HTTP Body traffic sent to clients (bytes)

	.10.8. [vhostMin]
	http.reqAverage
	Integer
	Average number of HTTP requests received from clients

	.10.9. [vhostMin]
	http.reqCount
	Integer
	Total number of HTTP requests received from clients

	.10.10. [vhostMin]
	http.resTotalAverage
	Integer
	Average number of all HTTP responses sent to clients

	.10.11. [vhostMin]
	http.resTotalCompleteAverage
	Integer
	Average number of HTTP transactions completed by clients

	.10.12. [vhostMin]
	http.resTotalTimeRes
	Integer
	Average elapsed time of client responses (0.01ms)

	.10.13. [vhostMin]
	http.resTotalTimeComplete
	Integer
	Average elapsed time of client HTTP transactions (0.01 ms)

	.10.14. [vhostMin]
	http.resTotalCount
	Integer
	Total number of all HTTP responses sent to clients

	.10.15. [vhostMin]
	http.resTotalCompleteCount
	Integer
	Total number of HTTP transactions completed by clients

	.10.20. [vhostMin]
	http.res2xxAverage
	Integer
	Average number of 2xx responses sent to clients

	.10.21. [vhostMin]
	http.res2xxCompleteAverage
	Integer
	Average number of 2xx transactions completed by clients

	.10.22. [vhostMin]
	http.res2xxTimeRes
	Integer
	Average elapsed time of client 2xx responses (0.01 ms)

	.10.23. [vhostMin]
	http.res2xxTimeComplete
	Integer
	Average completion time of client 2xx transactions (0.01 ms)

	.10.24. [vhostMin]
	http.res2xxCount
	Integer
	Total number of 2xx responses sent to clients

	.10.25. [vhostMin]
	http.res2xxCompleteCount
	Integer
	Total number of 2xx transactions completed by clients

	.10.30. [vhostMin]
	http.res3xxAverage
	Integer
	Average number of 3xx responses sent to clients

	.10.31. [vhostMin]
	http.res3xxCompleteAverage
	Integer
	Average number of 3xx transactions completed by clients

	.10.32. [vhostMin]
	http.res3xxTimeRes
	Integer
	Average elapsed time of client 3xx responses (0.01 ms)

	.10.33. [vhostMin]
	http.res3xxTimeComplete
	Integer
	Average completion time of client 3xx transactions (0.01 ms)

	.10.34. [vhostMin]
	http.res3xxCount
	Integer
	Total number of 3xx responses sent to clients

	.10.35. [vhostMin]
	http.res3xxCompleteCount
	Integer
	Total number of 3xx transactions completed by clients

	.10.40. [vhostMin]
	http.res4xxAverage
	Integer
	Average number of 4xx responses sent to clients

	.10.41. [vhostMin]
	http.res4xxCompleteAverage
	Integer
	Average number of 4xx transactions completed by clients

	.10.42. [vhostMin]
	http.res4xxTimeRes
	Integer
	Average elapsed time of client 4xx responses (0.01 ms)

	.10.43. [vhostMin]
	http.res4xxTimeComplete
	Integer
	Average completion time of client 4xx transactions (0.01 ms)

	.10.44. [vhostMin]
	http.res4xxCount
	Integer
	Total number of 4xx responses sent to clients

	.10.45. [vhostMin]
	http.res4xxCompleteCount
	Integer
	Total number of 4xx transactions completed by clients

	.10.50. [vhostMin]
	http.res5xxAverage
	Integer
	Average number of 5xx responses sent to clients

	.10.51. [vhostMin]
	http.res5xxCompleteAverage
	Integer
	Average number of 5xx transactions completed by clients

	.10.52. [vhostMin]
	http.res5xxTimeRes
	Integer
	Average elapsed time of client 5xx responses (0.01 ms)

	.10.53. [vhostMin]
	http.res5xxTimeComplete
	Integer
	Average completion time of client 5xx transactions (0.01 ms)

	.10.54. [vhostMin]
	http.res5xxCount
	Integer
	Total number of 5xx responses sent to clients

	.10.55. [vhostMin]
	http.res5xxCompleteCount
	Integer
	Total number of 5xx transactions completed by clients

	.10.60. [vhostMin]
	http.reqDeniedAverage
	Integer
	Average number of denied requests

	.10.61. [vhostMin]
	http.reqDeniedCount
	Integer
	Total number of denied requests

	.11
	portbypass
	OID
	Port bypass client traffic information

	.11.1. [vhostMin]
	portbypass.inbound
	Integer
	Average traffic received from clients via port bypass (bytes)

	.11.2. [vhostMin]
	portbypass.outbound
	Integer
	Average traffic sent to clients via port bypass (bytes)

	.11.3. [vhostMin]
	portbypass.sessionAverage
	Integer
	Average number of client sessions in port bypass

	.11.4. [vhostMin]
	portbypass.closedAverage
	Integer
	Average number of connections closed by clients during port bypass

	.11.5. [vhostMin]
	portbypass.closedCount
	Integer
	Total number of connections closed by clients during port bypass

	.12
	ssl
	OID
	SSL client traffic information

	.12.2. [vhostMin]
	ssl.inbound
	Integer
	Average traffic received from clients via SSL (bytes)

	.12.3. [vhostMin]
	ssl.outbound
	Integer
	Average traffic sent to clients via SSL (bytes)

	.13
	requestHitAverage
	OID
	Average number of cache HIT results

	.13.1. [vhostMin]
	requestHitAverage.TCP_HIT
	Integer
	TCP_HIT

	.13.2. [vhostMin]
	requestHitAverage.TCP_IMS_HIT
	Integer
	TCP_IMS_HIT

	.13.3. [vhostMin]
	requestHitAverage.TCP_REFRESH_HIT
	Integer
	TCP_REFRESH_HIT

	.13.4. [vhostMin]
	requestHitAverage.TCP_REF_FAIL_HIT
	Integer
	TCP_REF_FAIL_HIT

	.13.5. [vhostMin]
	requestHitAverage.TCP_NEGATIVE_HIT
	Integer
	TCP_NEGATIVE_HIT

	.13.6. [vhostMin]
	requestHitAverage.TCP_MISS
	Integer
	TCP_MISS

	.13.7. [vhostMin]
	requestHitAverage.TCP_REFRESH_MISS
	Integer
	TCP_REFRESH_MISS

	.13.8. [vhostMin]
	requestHitAverage.TCP_CLIENT_REFRESH_MISS
	Integer
	TCP_CLIENT_REFRESH_MISS

	.13.9. [vhostMin]
	requestHitAverage.TCP_DENIED
	Integer
	TCP_DENIED

	.13.10. [vhostMin]
	requestHitAverage.TCP_ERROR
	Integer
	TCP_ERROR

	.13.11. [vhostMin]
	requestHitAverage.TCP_REDIRECT_HIT
	Integer
	TCP_REDIRECT_HIT

	.14
	requestHitCount
	OID
	Total number of cache HIT results

	.14.1. [vhostMin]
	requestHitCount.TCP_HIT
	Integer
	TCP_HIT

	.14.2. [vhostMin]
	requestHitCount.TCP_IMS_HIT
	Integer
	TCP_IMS_HIT

	.14.3. [vhostMin]
	requestHitCount.TCP_REFRESH_HIT
	Integer
	TCP_REFRESH_HIT

	.14.4. [vhostMin]
	requestHitCount.TCP_REF_FAIL_HIT
	Integer
	TCP_REF_FAIL_HIT

	.14.5. [vhostMin]
	requestHitCount.TCP_NEGATIVE_HIT
	Integer
	TCP_NEGATIVE_HIT

	.14.6. [vhostMin]
	requestHitCount.TCP_MISS
	Integer
	TCP_MISS

	.14.7. [vhostMin]
	requestHitCount.TCP_REFRESH_MISS
	Integer
	TCP_REFRESH_MISS

	.14.8. [vhostMin]
	requestHitCount.TCP_CLIENT_REFRESH_MISS
	Integer
	TCP_CLIENT_REFRESH_MISS

	.14.9. [vhostMin]
	requestHitCount.TCP_DENIED
	Integer
	TCP_DENIED

	.14.10. [vhostMin]
	requestHitCount.TCP_ERROR
	Integer
	TCP_ERROR

	.14.11. [vhostMin]
	requestHitCount.TCP_REDIRECT_HIT
	Integer
	TCP_REDIRECT_HIT

cache.host.traffic.filesystem

OID = 1.3.6.1.4.1.40001.1.4.1.11.20

Provides File I/O statistics of hosts.

	OID
	Name
	Type
	Description

	.1. [vhostMin]
	requestHitRatio
	Integer
	Request Hit Ratio (100%)

	.2. [vhostMin]
	
	
	Request Hit Ratio (10000%)

	.3. [vhostMin]
	byteHitRatio
	Integer
	Byte Hit Ratio (100%)

	.4. [vhostMin]
	
	
	Byte Hit Ratio (10000%)

	.5. [vhostMin]
	outbound
	Integer
	Average traffic sent to File I/O (bytes)

	.6. [vhostMin]
	session
	Integer
	Average number of threads in File I/O

	.7
	requestHitAverage
	OID
	Average number of cache HIT results

	.7.1. [vhostMin]
	requestHitAverage.TCP_HIT
	Integer
	TCP_HIT

	.7.2. [vhostMin]
	requestHitAverage.TCP_IMS_HIT
	Integer
	TCP_IMS_HIT

	.7.3. [vhostMin]
	requestHitAverage.TCP_REFRESH_HIT
	Integer
	TCP_REFRESH_HIT

	.7.4. [vhostMin]
	requestHitAverage.TCP_REF_FAIL_HIT
	Integer
	TCP_REF_FAIL_HIT

	.7.5. [vhostMin]
	requestHitAverage.TCP_NEGATIVE_HIT
	Integer
	TCP_NEGATIVE_HIT

	.7.6. [vhostMin]
	requestHitAverage.TCP_MISS
	Integer
	TCP_MISS

	.7.7. [vhostMin]
	requestHitAverage.TCP_REFRESH_MISS
	Integer
	TCP_REFRESH_MISS

	.7.8. [vhostMin]
	requestHitAverage.TCP_CLIENT_REFRESH_MISS
	Integer
	TCP_CLIENT_REFRESH_MISS

	.7.9. [vhostMin]
	requestHitAverage.TCP_DENIED
	Integer
	TCP_DENIED

	.7.10. [vhostMin]
	requestHitAverage.TCP_ERROR
	Integer
	TCP_ERROR

	.7.11. [vhostMin]
	requestHitAverage.TCP_REDIRECT_HIT
	Integer
	TCP_REDIRECT_HIT

	.8
	requestHitCount
	OID
	Total number of cache HIT results

	.8.1. [vhostMin]
	requestHitCount.TCP_HIT
	Integer
	TCP_HIT

	.8.2. [vhostMin]
	requestHitCount.TCP_IMS_HIT
	Integer
	TCP_IMS_HIT

	.8.3. [vhostMin]
	requestHitCount.TCP_REFRESH_HIT
	Integer
	TCP_REFRESH_HIT

	.8.4. [vhostMin]
	requestHitCount.TCP_REF_FAIL_HIT
	Integer
	TCP_REF_FAIL_HIT

	.8.5. [vhostMin]
	requestHitCount.TCP_NEGATIVE_HIT
	Integer
	TCP_NEGATIVE_HIT

	.8.6. [vhostMin]
	requestHitCount.TCP_MISS
	Integer
	TCP_MISS

	.8.7. [vhostMin]
	requestHitCount.TCP_REFRESH_MISS
	Integer
	TCP_REFRESH_MISS

	.8.8. [vhostMin]
	requestHitCount.TCP_CLIENT_REFRESH_MISS
	Integer
	TCP_CLIENT_REFRESH_MISS

	.8.9. [vhostMin]
	requestHitCount.TCP_DENIED
	Integer
	TCP_DENIED

	.8.10. [vhostMin]
	requestHitCount.TCP_ERROR
	Integer
	TCP_ERROR

	.8.11. [vhostMin]
	requestHitCount.TCP_REDIRECT_HIT
	Integer
	TCP_REDIRECT_HIT

	.10. [vhostMin]
	getattr.filecount
	Integer
	(getattr function call) Number of FILE responses

	.11. [vhostMin]
	getattr.dircount
	Integer
	(getattr function call) Number of DIR responses

	.12. [vhostMin]
	getattr.failcount
	Integer
	(getattr function call) Number of failure responses

	.13. [vhostMin]
	getattr.timeres
	Integer
	(getattr function call) Response time (0.01 ms)

	.14. [vhostMin]
	open.count
	Integer
	Number of open function calls

	.15. [vhostMin]
	open.timeres
	Integer
	Response time of the open function (0.01 ms)

	.16. [vhostMin]
	read.count
	Integer
	Number of read function calls

	.17. [vhostMin]
	read.timeres
	Integer
	Response time of the read function (0.01 ms)

	.18. [vhostMin]
	read.buffersize
	Integer
	Size of the buffer requested by the read function (bytes)

	.19. [vhostMin]
	read.bufferfilled
	Integer
	Size of filled space in the buffer requested by the read function (bytes)

cache.host.traffic.dims

OID = 1.3.6.1.4.1.40001.1.4.1.11.21

Provides DIMS conversion statistics of hosts.

	OID
	Name
	Type
	Description

	.1. [vhostMin]
	requests
	Integer
	Number of DIMS conversion requests

	.2. [vhostMin]
	converted
	Integer
	Number of conversion successes

	.3. [vhostMin]
	failed
	Integer
	Number of conversion failures

	.4. [vhostMin]
	avgsrcsize
	Integer
	Average size of origin images (bytes)

	.5. [vhostMin]
	avgdestsize
	Integer
	Average size of converted images (bytes)

	.6. [vhostMin]
	avgtime
	Integer
	Conversion time (ms)

cache.host.traffic.compression

OID = 1.3.6.1.4.1.40001.1.4.1.11.22

Provides compression statistics of hosts.

	OID
	Name
	Type
	Description

	.1. [vhostMin]
	requests
	Integer
	Number of compression requests

	.2. [vhostMin]
	converted
	Integer
	Number of compression successes

	.3. [vhostMin]
	failed
	Integer
	Number of compression failures

	.4. [vhostMin]
	avgsrcsize
	Integer
	Average size of origin files (bytes)

	.5. [vhostMin]
	avgdestsize
	Integer
	Average size of compressed files (bytes)

	.6. [vhostMin]
	avgtime
	Integer
	Compression time (ms)

cache.vhost

OID = 1.3.6.1.4.1.40001.1.4.3.1

Provides virtual host information. [vhostIndex] starts at 1 and ranges up to the number of virtual hosts.

	OID
	Name
	Type
	Description

	.2. [vhostIndex]
	name
	String
	Virtual host name

	.3. [vhostIndex]
	status
	String
	“Healthy” or “Inactive” or “Emergency”

	.4. [vhostIndex]
	uptime
	Integer
	Virtual host runtime (seconds)

	.10
	contents
	OID
	Content information (expansion)

	.11
	traffic
	OID
	Statistics (expansion)

cache.vhost.contents

OID = 1.3.6.1.4.1.40001.1.4.3.1.10

Provides statistics for content in the service for a virtual host.

	OID
	Name
	Type
	Description

	.1. [vhostIndex]
	memory
	Integer
	Memory caching size (KB)

	.2. [vhostIndex]
	filesTotalCount
	Integer
	The number of files in service

	.3. [vhostIndex]
	filesTotalSize
	Integer
	Total size of files in service (MB)

	.10. [vhostIndex]
	filesCountU1KB
	Integer
	The number of files smaller than 1KB

	.11. [vhostIndex]
	filesCountU2KB
	Integer
	The number of files smaller than 2KB

	.12. [vhostIndex]
	filesCountU4KB
	Integer
	The number of files smaller than 4KB

	.13. [vhostIndex]
	filesCountU8KB
	Integer
	The number of files smaller than 8KB

	.14. [vhostIndex]
	filesCountU16KB
	Integer
	The number of files smaller than 16KB

	.15. [vhostIndex]
	filesCountU32KB
	Integer
	The number of files smaller than 32KB

	.16. [vhostIndex]
	filesCountU64KB
	Integer
	The number of files smaller than 64KB

	.17. [vhostIndex]
	filesCountU128KB
	Integer
	The number of files smaller than 128KB

	.18. [vhostIndex]
	filesCountU256KB
	Integer
	The number of files smaller than 256KB

	.19. [vhostIndex]
	filesCountU512KB
	Integer
	The number of files smaller than 512KB

	.20. [vhostIndex]
	filesCountU1MB
	Integer
	The number of files smaller than 1MB

	.21. [vhostIndex]
	filesCountU2MB
	Integer
	The number of files smaller than 2MB

	.22. [vhostIndex]
	filesCountU4MB
	Integer
	The number of files smaller than 4MB

	.23. [vhostIndex]
	filesCountU8MB
	Integer
	The number of files smaller than 8MB

	.24. [vhostIndex]
	filesCountU16MB
	Integer
	The number of files smaller than 16MB

	.25. [vhostIndex]
	filesCountU32MB
	Integer
	The number of files smaller than 32MB

	.26. [vhostIndex]
	filesCountU64MB
	Integer
	The number of files smaller than 64MB

	.27. [vhostIndex]
	filesCountU128MB
	Integer
	The number of files smaller than 128MB

	.28. [vhostIndex]
	filesCountU256MB
	Integer
	The number of files smaller than 256MB

	.29. [vhostIndex]
	filesCountU512MB
	Integer
	The number of files smaller than 512MB

	.30. [vhostIndex]
	filesCountU1GB
	Integer
	The number of files smaller than 1GB

	.31. [vhostIndex]
	filesCountU2GB
	Integer
	The number of files smaller than 2GB

	.32. [vhostIndex]
	filesCountU4GB
	Integer
	The number of files smaller than 4GB

	.33. [vhostIndex]
	filesCountU8GB
	Integer
	The number of files smaller than 8GB

	.34. [vhostIndex]
	filesCountU16GB
	Integer
	The number of files smaller than 16GB

	.35. [vhostIndex]
	filesCountO16GB
	Integer
	The number of files larger than 16GB

cache.vhost.traffic

OID = 1.3.6.1.4.1.40001.1.4.3.1.11

Provides cache service and traffic statistics for a virtual host. Traffic statistics are provided as an average of up to 60 minutes. If the time value is omitted or set to 0, statistics will be provided in real time.

	OID
	Name
	Type
	Description

	.1. [vhostMin] . [vhostIndex]
	requestHitRatio
	Integer
	Request Hit Ratio (100%)

	.2. [vhostMin] . [vhostIndex]
	
	
	Request Hit Ratio (10000%)

	.3. [vhostMin] . [vhostIndex]
	bytesHitRatio
	Integer
	Bytes Hit Ratio (100%)

	.4. [vhostMin] . [vhostIndex]
	
	
	Bytes Hit Ratio (10000%)

	.10
	origin
	OID
	Origin traffic information (expansion)

	.11
	client
	OID
	Client traffic information (expansion)

cache.vhost.traffic.origin

OID = 1.3.6.1.4.1.40001.1.4.3.1.11.10

Provides origin server traffic statistics. Origin server traffic is divided into HTTP traffic and port bypass traffic.

	OID
	Name
	Type
	Description

	.1. [vhostMin] . [vhostIndex]
	inbound
	Integer
	Average traffic received from the origin server (bytes)

	.2. [vhostMin] . [vhostIndex]
	outbound
	Integer
	Average traffic sent to the origin server (bytes)

	.3. [vhostMin] . [vhostIndex]
	sessionAverage
	Integer
	Average origin server session count

	.4. [vhostMin] . [vhostIndex]
	activesessionAverage
	Integer
	Average origin server transmitting session count

	.10
	http
	OID
	Origin server HTTP traffic information

	.10.1. [vhostMin] . [vhostIndex]
	http.inbound
	Integer
	Average HTTP traffic received from the origin server (bytes)

	.10.2. [vhostMin] . [vhostIndex]
	http.outbound
	Integer
	Average HTTP traffic sent to the origin server (bytes)

	.10.3. [vhostMin] . [vhostIndex]
	http.sessionAverage
	Integer
	Average origin server HTTP session count

	.10.4. [vhostMin] . [vhostIndex]
	http.reqHeaderSize
	Integer
	Average HTTP Header traffic sent to the origin server (bytes)

	.10.5. [vhostMin] . [vhostIndex]
	http.reqBodySize
	Integer
	Average HTTP Body traffic sent to the origin server (bytes)

	.10.6. [vhostMin] . [vhostIndex]
	http.resHeaderSize
	Integer
	Average HTTP Header traffic received from the origin server (bytes)

	.10.7. [vhostMin] . [vhostIndex]
	http.resBodySize
	Integer
	Average HTTP Body traffic received from the origin server (bytes)

	.10.8. [vhostMin] . [vhostIndex]
	http.reqAverage
	Integer
	Average number of HTTP requests sent to the origin server

	.10.9. [vhostMin] . [vhostIndex]
	http.reqCount
	Integer
	Total number of HTTP requests sent to the origin server

	.10.10. [vhostMin] . [vhostIndex]
	http.resTotalAverage
	Integer
	Average number of all HTTP responses received from the origin server

	.10.11. [vhostMin] . [vhostIndex]
	http.resTotalCompleteAverage
	Integer
	Average number of successful HTTP transactions from the origin server

	.10.12. [vhostMin] . [vhostIndex]
	http.resTotalTimeRes
	Integer
	Average elapsed time to receive a response header from the origin server (0.01 ms)

	.10.13. [vhostMin] . [vhostIndex]
	http.resTotalTimeComplete
	Integer
	Average completion time of HTTP transactions from the origin server (0.01 ms)

	.10.14. [vhostMin] . [vhostIndex]
	http.resTotalCount
	Integer
	Total number of all HTTP responses received from the origin server

	.10.15. [vhostMin] . [vhostIndex]
	http.resTotalCompleteCount
	Integer
	Total number of successful HTTP transactions from the origin server

	.10.20. [vhostMin] . [vhostIndex]
	http.res2xxAverage
	Integer
	Number of 2xx responses from the origin server

	.10.21. [vhostMin] . [vhostIndex]
	http.res2xxCompleteAverage
	Integer
	Number of successful 2xx transactions from the origin server

	.10.22. [vhostMin] . [vhostIndex]
	http.res2xxTimeRes
	Integer
	Average elapsed time to receive a 2xx header from the origin server (0.01 ms)

	.10.23. [vhostMin] . [vhostIndex]
	http.res2xxTimeComplete
	Integer
	Average completion time of 2xx transactions from the origin server (0.01 ms)

	.10.24. [vhostMin] . [vhostIndex]
	http.res2xxCount
	Integer
	Total number of 2xx responses from the origin server

	.10.25. [vhostMin] . [vhostIndex]
	http.res2xxCompleteCount
	Integer
	Total number of successful 2xx transactions from the origin server

	.10.30. [vhostMin] . [vhostIndex]
	http.res3xxAverage
	Integer
	Number of 3xx responses from the origin server

	.10.31. [vhostMin] . [vhostIndex]
	http.res3xxCompleteAverage
	Integer
	Number of successful 3xx transactions from the origin server

	.10.32. [vhostMin] . [vhostIndex]
	http.res3xxTimeRes
	Integer
	Average elapsed time to receive a 3xx header from the origin server (0.01 ms)

	.10.33. [vhostMin] . [vhostIndex]
	http.res3xxTimeComplete
	Integer
	Average completion time of 3xx transactions from the origin server (0.01 ms)

	.10.34. [vhostMin] . [vhostIndex]
	http.res3xxCount
	Integer
	Total number of 3xx responses from the origin server

	.10.35. [vhostMin] . [vhostIndex]
	http.res3xxCompleteCount
	Integer
	Total number of successful 3xx transactions from the origin server

	.10.40. [vhostMin] . [vhostIndex]
	http.res4xxAverage
	Integer
	Number of 4xx responses from the origin server

	.10.41. [vhostMin] . [vhostIndex]
	http.res4xxCompleteAverage
	Integer
	Number of successful 4xx transactions from the origin server

	.10.42. [vhostMin] . [vhostIndex]
	http.res4xxTimeRes
	Integer
	Average elapsed time to receive a 4xx header from the origin server (0.01 ms)

	.10.43. [vhostMin] . [vhostIndex]
	http.res4xxTimeComplete
	Integer
	Average completion time of 4xx transactions from the origin server (0.01 ms)

	.10.44. [vhostMin] . [vhostIndex]
	http.res4xxCount
	Integer
	Total number of 4xx responses from the origin server

	.10.45. [vhostMin] . [vhostIndex]
	http.res4xxCompleteCount
	Integer
	Total number of successful 4xx transactions from the origin server

	.10.50. [vhostMin] . [vhostIndex]
	http.res5xxAverage
	Integer
	Number of 5xx responses from the origin server

	.10.51. [vhostMin] . [vhostIndex]
	http.res5xxCompleteAverage
	Integer
	Number of successful 5xx transactions from the origin server

	.10.52. [vhostMin] . [vhostIndex]
	http.res5xxTimeRes
	Integer
	Average elapsed time to receive a 5xx header from the origin server (0.01 ms)

	.10.53. [vhostMin] . [vhostIndex]
	http.res5xxTimeComplete
	Integer
	Average completion time of 5xx transactions from the origin server (0.01 ms)

	.10.54. [vhostMin] . [vhostIndex]
	http.res5xxCount
	Integer
	Total number of 5xx responses from the origin server

	.10.55. [vhostMin] . [vhostIndex]
	http.res5xxCompleteCount
	Integer
	Total number of successful 5xx transactions from the origin server

	.10.60. [vhostMin] . [vhostIndex]
	http.connectTimeoutAverage
	Integer
	Average number of origin server connection timeouts

	.10.61. [vhostMin] . [vhostIndex]
	http.receiveTimeoutAverage
	Integer
	Average number of origin server reception timeouts

	.10.62. [vhostMin] . [vhostIndex]
	http.connectAverage
	Integer
	Average number of origin server connection successes

	.10.63. [vhostMin] . [vhostIndex]
	http.dnsQueryTime
	Integer
	Average DNS query time when connecting to the origin server

	.10.64. [vhostMin] . [vhostIndex]
	http.connectTime
	Integer
	Origin server average connection time (0.01 ms)

	.10.65. [vhostMin] . [vhostIndex]
	http.connectTimeoutCount
	Integer
	Total number of origin server connection timeouts

	.10.66. [vhostMin] . [vhostIndex]
	http.receiveTimeoutCount
	Integer
	Total number of origin server reception timeouts

	.10.67. [vhostMin] . [vhostIndex]
	http.connectCount
	Integer
	Total number of origin server connection successes

	.10.68. [vhostMin] . [vhostIndex]
	http.closeAverage
	Integer
	Average number of sockets closed by the origin server during transmission

	.10.69. [vhostMin] . [vhostIndex]
	http.closeCount
	Integer
	Total number of sockets closed by the origin server during transmission

	.11
	portbypass
	OID
	Port bypass origin server traffic information

	.11.1. [vhostMin] . [vhostIndex]
	portbypass.inbound
	Integer
	Average traffic received from the origin server via port bypass (bytes)

	.11.2. [vhostMin] . [vhostIndex]
	portbypass.outbound
	Integer
	Average traffic sent to the origin server via port bypass (bytes)

	.11.3. [vhostMin] . [vhostIndex]
	portbypass.sessionAverage
	Integer
	Average number of origin server sessions in port bypass

	.11.4. [vhostMin] . [vhostIndex]
	portbypass.closedAverage
	Integer
	Average number of connections closed by the origin server during port bypass

	.11.5. [vhostMin] . [vhostIndex]
	portbypass.connectTimeoutAverage
	Integer
	Average number of origin server connection timeouts during port bypass

	.11.6. [vhostMin] . [vhostIndex]
	portbypass.closedCount
	Integer
	Total number of connections closed by the origin server during port bypass

	.11.7. [vhostMin] . [vhostIndex]
	portbypass.connectTimeoutCount
	Integer
	Total number of origin server connection timeouts during port bypass

cache.vhost.traffic.client

OID = 1.3.6.1.4.1.40001.1.4.3.1.11.11

Provides client traffic statistics. Client traffic is divided into HTTP traffic, SSL traffic, and port bypass traffic. SNMP does not provide statistics for each directory. Even if directory statistics are configured, the data will be accumulated before being provided.

	OID
	Name
	Type
	Description

	.1. [vhostMin] . [vhostIndex]
	inbound
	Integer
	Average traffic received from clients (bytes)

	.2. [vhostMin] . [vhostIndex]
	outbound
	Integer
	Average traffic sent to clients (bytes)

	.3. [vhostMin] . [vhostIndex]
	sessionAverage
	Integer
	Average client session count

	.4. [vhostMin] . [vhostIndex]
	activesessionAverage
	Integer
	Average client transmitting session count

	.10
	http
	OID
	Client HTTP traffic information

	.10.1. [vhostMin] . [vhostIndex]
	http.inbound
	Integer
	Average HTTP traffic received from clients (bytes)

	.10.2. [vhostMin] . [vhostIndex]
	http.outbound
	Integer
	Average HTTP traffic sent to clients (bytes)

	.10.3. [vhostMin] . [vhostIndex]
	http.sessionAverage
	Integer
	Average client HTTP session count

	.10.4. [vhostMin] . [vhostIndex]
	http.reqHeaderSize
	Integer
	Average HTTP Header traffic received from clients (bytes)

	.10.5. [vhostMin] . [vhostIndex]
	http.reqBodySize
	Integer
	Average HTTP Body traffic received from clients (bytes)

	.10.6. [vhostMin] . [vhostIndex]
	http.resHeaderSize
	Integer
	Average HTTP Header traffic sent to clients (bytes)

	.10.7. [vhostMin] . [vhostIndex]
	http.resBodySize
	Integer
	Average HTTP Body traffic sent to clients (bytes)

	.10.8. [vhostMin] . [vhostIndex]
	http.reqAverage
	Integer
	Average number of HTTP requests received from clients

	.10.9. [vhostMin] . [vhostIndex]
	http.reqCount
	Integer
	Total number of HTTP requests received from clients

	.10.10. [vhostMin] . [vhostIndex]
	http.resTotalAverage
	Integer
	Average number of all HTTP responses sent to clients

	.10.11. [vhostMin] . [vhostIndex]
	http.resTotalCompleteAverage
	Integer
	Average number of HTTP transactions completed by clients

	.10.12. [vhostMin] . [vhostIndex]
	http.resTotalTimeRes
	Integer
	Average elapsed time of client responses (0.01ms)

	.10.13. [vhostMin] . [vhostIndex]
	http.resTotalTimeComplete
	Integer
	Average elapsed time of client HTTP transactions (0.01 ms)

	.10.14. [vhostMin] . [vhostIndex]
	http.resTotalCount
	Integer
	Total number of all HTTP responses sent to clients

	.10.15. [vhostMin] . [vhostIndex]
	http.resTotalCompleteCount
	Integer
	Total number of HTTP transactions completed by clients

	.10.20. [vhostMin] . [vhostIndex]
	http.res2xxAverage
	Integer
	Average number of 2xx responses sent to clients

	.10.21. [vhostMin] . [vhostIndex]
	http.res2xxCompleteAverage
	Integer
	Average number of 2xx transactions completed by clients

	.10.22. [vhostMin] . [vhostIndex]
	http.res2xxTimeRes
	Integer
	Average elapsed time of client 2xx responses (0.01 ms)

	.10.23. [vhostMin] . [vhostIndex]
	http.res2xxTimeComplete
	Integer
	Average completion time of client 2xx transactions (0.01 ms)

	.10.24. [vhostMin] . [vhostIndex]
	http.res2xxCount
	Integer
	Total number of 2xx responses sent to clients

	.10.25. [vhostMin] . [vhostIndex]
	http.res2xxCompleteCount
	Integer
	Total number of 2xx transactions completed by clients

	.10.30. [vhostMin] . [vhostIndex]
	http.res3xxAverage
	Integer
	Average number of 3xx responses sent to clients

	.10.31. [vhostMin] . [vhostIndex]
	http.res3xxCompleteAverage
	Integer
	Average number of 3xx transactions completed by clients

	.10.32. [vhostMin] . [vhostIndex]
	http.res3xxTimeRes
	Integer
	Average elapsed time of client 3xx responses (0.01 ms)

	.10.33. [vhostMin] . [vhostIndex]
	http.res3xxTimeComplete
	Integer
	Average completion time of client 3xx transactions (0.01 ms)

	.10.34. [vhostMin] . [vhostIndex]
	http.res3xxCount
	Integer
	Total number of 3xx responses sent to clients

	.10.35. [vhostMin] . [vhostIndex]
	http.res3xxCompleteCount
	Integer
	Total number of 3xx transactions completed by clients

	.10.40. [vhostMin] . [vhostIndex]
	http.res4xxAverage
	Integer
	Average number of 4xx responses sent to clients

	.10.41. [vhostMin] . [vhostIndex]
	http.res4xxCompleteAverage
	Integer
	Average number of 4xx transactions completed by clients

	.10.42. [vhostMin] . [vhostIndex]
	http.res4xxTimeRes
	Integer
	Average elapsed time of client 4xx responses (0.01 ms)

	.10.43. [vhostMin] . [vhostIndex]
	http.res4xxTimeComplete
	Integer
	Average completion time of client 4xx transactions (0.01 ms)

	.10.44. [vhostMin] . [vhostIndex]
	http.res4xxCount
	Integer
	Total number of 4xx responses sent to clients

	.10.45. [vhostMin] . [vhostIndex]
	http.res4xxCompleteCount
	Integer
	Total number of 4xx transactions completed by clients

	.10.50. [vhostMin] . [vhostIndex]
	http.res5xxAverage
	Integer
	Average number of 5xx responses sent to clients

	.10.51. [vhostMin] . [vhostIndex]
	http.res5xxCompleteAverage
	Integer
	Average number of 5xx transactions completed by clients

	.10.52. [vhostMin] . [vhostIndex]
	http.res5xxTimeRes
	Integer
	Average elapsed time of client 5xx responses (0.01 ms)

	.10.53. [vhostMin] . [vhostIndex]
	http.res5xxTimeComplete
	Integer
	Average completion time of client 5xx transactions (0.01 ms)

	.10.54. [vhostMin] . [vhostIndex]
	http.res5xxCount
	Integer
	Total number of 5xx responses sent to clients

	.10.55. [vhostMin] . [vhostIndex]
	http.res5xxCompleteCount
	Integer
	Total number of 5xx transactions completed by clients

	.10.60. [vhostMin] . [vhostIndex]
	http.reqDeniedAverage
	Integer
	Average number of denied requests

	.10.61. [vhostMin] . [vhostIndex]
	http.reqDeniedCount
	Integer
	Total number of denied requests

	.11
	portbypass
	OID
	Port bypass client traffic information

	.11.1. [vhostMin] . [vhostIndex]
	portbypass.inbound
	Integer
	Average traffic received from clients via port bypass (bytes)

	.11.2. [vhostMin] . [vhostIndex]
	portbypass.outbound
	Integer
	Average traffic sent to clients via port bypass (bytes)

	.11.3. [vhostMin] . [vhostIndex]
	portbypass.sessionAverage
	Integer
	Average number of client sessions in port bypass

	.11.4. [vhostMin] . [vhostIndex]
	portbypass.closedAverage
	Integer
	Average number of connections closed by clients during port bypass

	.11.5. [vhostMin] . [vhostIndex]
	portbypass.closedCount
	Integer
	Total number of connections closed by clients during port bypass

	.12
	ssl
	OID
	SSL client traffic information

	.12.2. [vhostMin] . [vhostIndex]
	ssl.inbound
	Integer
	Average traffic received from clients via SSL (bytes)

	.12.3. [vhostMin] . [vhostIndex]
	ssl.outbound
	Integer
	Average traffic sent to clients via SSL (bytes)

	.13
	requestHitAverage
	OID
	Average number of cache HIT results

	.13.1. [vhostMin] . [vhostIndex]
	requestHitAverage.TCP_HIT
	Integer
	TCP_HIT

	.13.2. [vhostMin] . [vhostIndex]
	requestHitAverage.TCP_IMS_HIT
	Integer
	TCP_IMS_HIT

	.13.3. [vhostMin] . [vhostIndex]
	requestHitAverage.TCP_REFRESH_HIT
	Integer
	TCP_REFRESH_HIT

	.13.4. [vhostMin] . [vhostIndex]
	requestHitAverage.TCP_REF_FAIL_HIT
	Integer
	TCP_REF_FAIL_HIT

	.13.5. [vhostMin] . [vhostIndex]
	requestHitAverage.TCP_NEGATIVE_HIT
	Integer
	TCP_NEGATIVE_HIT

	.13.6. [vhostMin] . [vhostIndex]
	requestHitAverage.TCP_MISS
	Integer
	TCP_MISS

	.13.7. [vhostMin] . [vhostIndex]
	requestHitAverage.TCP_REFRESH_MISS
	Integer
	TCP_REFRESH_MISS

	.13.8. [vhostMin] . [vhostIndex]
	requestHitAverage.TCP_CLIENT_REFRESH_MISS
	Integer
	TCP_CLIENT_REFRESH_MISS

	.13.9. [vhostMin] . [vhostIndex]
	requestHitAverage.TCP_DENIED
	Integer
	TCP_DENIED

	.13.10. [vhostMin] . [vhostIndex]
	requestHitAverage.TCP_ERROR
	Integer
	TCP_ERROR

	.13.11. [vhostMin] . [vhostIndex]
	requestHitAverage.TCP_REDIRECT_HIT
	Integer
	TCP_REDIRECT_HIT

	.14
	requestHitCount
	OID
	Total number of cache HIT results

	.14.1. [vhostMin] . [vhostIndex]
	requestHitCount.TCP_HIT
	Integer
	TCP_HIT

	.14.2. [vhostMin] . [vhostIndex]
	requestHitCount.TCP_IMS_HIT
	Integer
	TCP_IMS_HIT

	.14.3. [vhostMin] . [vhostIndex]
	requestHitCount.TCP_REFRESH_HIT
	Integer
	TCP_REFRESH_HIT

	.14.4. [vhostMin] . [vhostIndex]
	requestHitCount.TCP_REF_FAIL_HIT
	Integer
	TCP_REF_FAIL_HIT

	.14.5. [vhostMin] . [vhostIndex]
	requestHitCount.TCP_NEGATIVE_HIT
	Integer
	TCP_NEGATIVE_HIT

	.14.6. [vhostMin] . [vhostIndex]
	requestHitCount.TCP_MISS
	Integer
	TCP_MISS

	.14.7. [vhostMin] . [vhostIndex]
	requestHitCount.TCP_REFRESH_MISS
	Integer
	TCP_REFRESH_MISS

	.14.8. [vhostMin] . [vhostIndex]
	requestHitCount.TCP_CLIENT_REFRESH_MISS
	Integer
	TCP_CLIENT_REFRESH_MISS

	.14.9. [vhostMin] . [vhostIndex]
	requestHitCount.TCP_DENIED
	Integer
	TCP_DENIED

	.14.10. [vhostMin] . [vhostIndex]
	requestHitCount.TCP_ERROR
	Integer
	TCP_ERROR

	.14.11. [vhostMin] . [vhostIndex]
	requestHitCount.TCP_REDIRECT_HIT
	Integer
	TCP_REDIRECT_HIT

cache.vhost.traffic.filesystem

OID = 1.3.6.1.4.1.40001.1.4.3.1.11.20

Provides File I/O statistics of a virtual host.

	OID
	Name
	Type
	Description

	.1. [vhostMin] . [vhostIndex]
	requestHitRatio
	Integer
	Request Hit Ratio (100%)

	.2. [vhostMin] . [vhostIndex]
	
	
	Request Hit Ratio (10000%)

	.3. [vhostMin] . [vhostIndex]
	byteHitRatio
	Integer
	Byte Hit Ratio (100%)

	.4. [vhostMin] . [vhostIndex]
	
	
	Byte Hit Ratio (10000%)

	.5. [vhostMin] . [vhostIndex]
	outbound
	Integer
	Average traffic sent to File I/O (bytes)

	.6. [vhostMin] . [vhostIndex]
	session
	Integer
	Average number of threads in File I/O

	.7
	requestHitAverage
	OID
	Average number of cache HIT results

	.7.1. [vhostMin] . [vhostIndex]
	requestHitAverage.TCP_HIT
	Integer
	TCP_HIT

	.7.2. [vhostMin] . [vhostIndex]
	requestHitAverage.TCP_IMS_HIT
	Integer
	TCP_IMS_HIT

	.7.3. [vhostMin] . [vhostIndex]
	requestHitAverage.TCP_REFRESH_HIT
	Integer
	TCP_REFRESH_HIT

	.7.4. [vhostMin] . [vhostIndex]
	requestHitAverage.TCP_REF_FAIL_HIT
	Integer
	TCP_REF_FAIL_HIT

	.7.5. [vhostMin] . [vhostIndex]
	requestHitAverage.TCP_NEGATIVE_HIT
	Integer
	TCP_NEGATIVE_HIT

	.7.6. [vhostMin] . [vhostIndex]
	requestHitAverage.TCP_MISS
	Integer
	TCP_MISS

	.7.7. [vhostMin] . [vhostIndex]
	requestHitAverage.TCP_REFRESH_MISS
	Integer
	TCP_REFRESH_MISS

	.7.8. [vhostMin] . [vhostIndex]
	requestHitAverage.TCP_CLIENT_REFRESH_MISS
	Integer
	TCP_CLIENT_REFRESH_MISS

	.7.9. [vhostMin] . [vhostIndex]
	requestHitAverage.TCP_DENIED
	Integer
	TCP_DENIED

	.7.10. [vhostMin] . [vhostIndex]
	requestHitAverage.TCP_ERROR
	Integer
	TCP_ERROR

	.7.11. [vhostMin] . [vhostIndex]
	requestHitAverage.TCP_REDIRECT_HIT
	Integer
	TCP_REDIRECT_HIT

	.8
	requestHitCount
	OID
	Total number of cache HIT results

	.8.1. [vhostMin] . [vhostIndex]
	requestHitCount.TCP_HIT
	Integer
	TCP_HIT

	.8.2. [vhostMin] . [vhostIndex]
	requestHitCount.TCP_IMS_HIT
	Integer
	TCP_IMS_HIT

	.8.3. [vhostMin] . [vhostIndex]
	requestHitCount.TCP_REFRESH_HIT
	Integer
	TCP_REFRESH_HIT

	.8.4. [vhostMin] . [vhostIndex]
	requestHitCount.TCP_REF_FAIL_HIT
	Integer
	TCP_REF_FAIL_HIT

	.8.5. [vhostMin] . [vhostIndex]
	requestHitCount.TCP_NEGATIVE_HIT
	Integer
	TCP_NEGATIVE_HIT

	.8.6. [vhostMin] . [vhostIndex]
	requestHitCount.TCP_MISS
	Integer
	TCP_MISS

	.8.7. [vhostMin] . [vhostIndex]
	requestHitCount.TCP_REFRESH_MISS
	Integer
	TCP_REFRESH_MISS

	.8.8. [vhostMin] . [vhostIndex]
	requestHitCount.TCP_CLIENT_REFRESH_MISS
	Integer
	TCP_CLIENT_REFRESH_MISS

	.8.9. [vhostMin] . [vhostIndex]
	requestHitCount.TCP_DENIED
	Integer
	TCP_DENIED

	.8.10. [vhostMin] . [vhostIndex]
	requestHitCount.TCP_ERROR
	Integer
	TCP_ERROR

	.8.11. [vhostMin] . [vhostIndex]
	requestHitCount.TCP_REDIRECT_HIT
	Integer
	TCP_REDIRECT_HIT

	.10. [vhostMin] . [vhostIndex]
	getattr.filecount
	Integer
	(getattr function call) Number of FILE responses

	.11. [vhostMin] . [vhostIndex]
	getattr.dircount
	Integer
	(getattr function call) Number of DIR responses

	.12. [vhostMin] . [vhostIndex]
	getattr.failcount
	Integer
	(getattr function call) Number of failure responses

	.13. [vhostMin] . [vhostIndex]
	getattr.timeres
	Integer
	(getattr function call) Response time (0.01 ms)

	.14. [vhostMin] . [vhostIndex]
	open.count
	Integer
	Number of open function calls

	.15. [vhostMin] . [vhostIndex]
	open.timeres
	Integer
	Response time of the open function (0.01 ms)

	.16. [vhostMin] . [vhostIndex]
	read.count
	Integer
	Number of read function calls

	.17. [vhostMin] . [vhostIndex]
	read.timeres
	Integer
	Response time of the read function (0.01 ms)

	.18. [vhostMin] . [vhostIndex]
	read.buffersize
	Integer
	Size of the buffer requested by the read function (bytes)

	.19. [vhostMin] . [vhostIndex]
	read.bufferfilled
	Integer
	Size of filled space in the buffer requested by the read function (bytes)

cache.vhost.traffic.dims

OID = 1.3.6.1.4.1.40001.1.4.3.1.11.21

Provides DIMS conversion statistics of a virtual host.

	OID
	Name
	Type
	Description

	.1. [vhostMin] . [vhostIndex]
	requests
	Integer
	Number of DIMS conversion requests

	.2. [vhostMin] . [vhostIndex]
	converted
	Integer
	Number of conversion successes

	.3. [vhostMin] . [vhostIndex]
	failed
	Integer
	Number of conversion failures

	.4. [vhostMin] . [vhostIndex]
	avgsrcsize
	Integer
	Average size of origin images (bytes)

	.5. [vhostMin] . [vhostIndex]
	avgdestsize
	Integer
	Average size of converted images (bytes)

	.6. [vhostMin] . [vhostIndex]
	avgtime
	Integer
	Conversion time (ms)

cache.vhost.traffic.compression

OID = 1.3.6.1.4.1.40001.1.4.3.1.11.22

Provides compression statistics of a virtual host.

	OID
	Name
	Type
	Description

	.1. [vhostMin] . [vhostIndex]
	requests
	Integer
	Number of compression requests

	.2. [vhostMin] . [vhostIndex]
	converted
	Integer
	Number of compression successes

	.3. [vhostMin] . [vhostIndex]
	failed
	Integer
	Number of compression failures

	.4. [vhostMin] . [vhostIndex]
	avgsrcsize
	Integer
	Average size of origin files (bytes)

	.5. [vhostMin] . [vhostIndex]
	avgdestsize
	Integer
	Average size of compressed files (bytes)

	.6. [vhostMin] . [vhostIndex]
	avgtime
	Integer
	Compression time (ms)

cache.view

OID = 1.3.6.1.4.1.40001.1.4.11.1

Provides information identical to the virtual host statistics. [viewIndex] starts at 1 and ranges up to the number of Views.

	1.3.6.1.4.1.40001.1.4.3 - Virtual host statistics

	1.3.6.1.4.1.40001.1.4.11 - View statistics

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STON Edge Server 2.3.4 documentation

Chapter 12. Log

This chapter will explain the logs. A service both starts and ends with the logs. The logs can act as valuable assets to keep, laws to abide by, and arbitrators of system failure.

Logs are divided into global logs and virtual host logs. All logs can be configured to be on or off and share identical properties.

<XXX Type="time" Unit="1440" Retention="10" Compression="OFF">ON</XXX>

	Type (default: time) , Unit (default: 1440 min) Sets the rolling conditions for logs
	time Rolls the log file for every configured unit of time (unit: min).

	size Rolls the log file for every configured unit of size (unit: MB).

	both Using a comma, time and size can be configured at the same time. For example, a configuration of Unit="1440, 100" rolls the log file every 24 hours (1440 minutes) or every 100 MB.

	Retention (default: 10 files) Keeps up to the set number of log files.

	Compression (default: OFF) Compresses the log when rolling. For example, when the file access_20140715_0000.log is rolling, it is compressed and saved as access_20140715_0000.log.gz.

If Type is set to “time” and Unit set to 10, the log will be rolled on every multiple of 10 minutes. That is, even if the service started at 2:18, the log will be rolled at 2:20, 2:30, 2:40, and so on. Likewise, if you want to roll the log every day at midnight, you can set Unit to 1440 (60 min * 20 hours). If Type is set to “time”, the logs will be rolled at least once a day, and Unit cannot be set above 1440.

[image: ../_images/log_rolling1.jpg]

If the log is rolled with a maximum value of 24 hours (Unit="1440"), the log will be recorded as seen below.

[image: ../_images/log_rolling2.jpg]

Install Log

All details during installation/update will be recorded in the file install.log. No extra configuration is needed for this log.

#DownloadURL: http://foobar.com/ston/ston.2.0.0.rhel.2.6.32.x64.tar.gz
#DownloadTime: 13 sec
#Target: STON 2.0.0
#Date: 2014.03.03 16:48:35
Prepare for STON 2.0.0 install process
 Stopping STON...
 STON stopped
[Copying files]
 `./fuse.conf' -> `/etc/fuse.conf'
 `./libfuse.so.2' -> `/usr/local/ston/libfuse.so.2'
 `./libtbbmalloc_proxy.so' -> `/usr/local/ston/libtbbmalloc_proxy.so'
 `./start-stop-daemon' -> `/usr/sbin/start-stop-daemon'
 `./libtbbmalloc_proxy.so.2' -> `/usr/local/ston/libtbbmalloc_proxy.so.2'
 `./libtbbmalloc.so' -> `/usr/local/ston/libtbbmalloc.so'
 `./libtbbmalloc.so.2' -> `/usr/local/ston/libtbbmalloc.so.2'
 `./libtbb.so' -> `/usr/local/ston/libtbb.so'
 `./libtbb.so.2' -> `/usr/local/ston/libtbb.so.2'
 `./stond' -> `/usr/local/ston/stond'
 `./stonx' -> `/usr/local/ston/stonx'
 `./stonr' -> `/usr/local/ston/stonr'
 `./stonu' -> `/usr/local/ston/stonu'
 `./stonapi' -> `/usr/local/ston/stonapi'
 `./server.xml.default' -> `/usr/local/ston/server.xml.default'
 `./vhosts.xml.default' -> `/usr/local/ston/vhosts.xml.default'
 `./ston_format.sh' -> `/usr/local/ston/ston_format.sh'
 `./ston_diskinfo.sh' -> `/usr/local/ston/ston_diskinfo.sh'
 `./wm.sh' -> `/usr/local/ston/wm.sh'
[Exporting config files]
 #Export so directory
 /usr/local/ston/ to ld.so.conf
 #Export sysctl to /etc/sysctl.conf
 vm.swappiness=0
 vm.min_free_kbytes=524288
 #Export sudoers for WM
 Defaults !requiretty
 winesoft ALL=NOPASSWD: /etc/init.d/ston stop, /etc/init.d/ston start, /bin/ps -ef
[Configuring STON daemon script]
 STON deamon activate in run-level 2345.
[Installing sub-packages]
 curl installed.
 libjpeg installed.
 libgomp installed.
 rrdtool installed.
[Installing WM]
 Stopping WM...
 WM stopped
 `./wm.server_default.xml' -> `/usr/local/ston/wm/tmp/conf/server_default.xml'
 `./wm.vhost_default.xml' -> `/usr/local/ston/wm/tmp/conf/vhost_default.xml'
 WM configuration found. Current WM port : 8500
 PHP module for Legacy(CentOS 5.5) installed
 `./libphp5.so.5.5' -> `/usr/local/ston/wm/modules/libphp5.so'
 WM installation almost complete. Changing WM privileges.
Installation successfully complete

Info Log

The Info log can be configured in global settings (server.xml).

server.xml - <Server><Cache>

<InfoLog Type="size" Unit="1" Retention="5">ON</InfoLog>

	<InfoLog> (default: ON, Type: size, Unit: 1) Records operation and configuration changes in STON.

Deny Log

The Deny log can be configured in global settings (server.xml).

server.xml - <Server><Cache>

<DenyLog Type="size" Unit="1" Retention="5">ON</DenyLog>

	<DenyLog> (default: ON, Type: size, Unit: 1)

Records IP addresses denied by Server Access Control.

#Fields: date time c-ip deny
2012.11.15 07:06:10 1.1.1.1 AP
2012.11.15 07:06:26 2.2.2.2 GIN
2012.11.15 07:06:30 3.3.3.3 3.3.3.1-255

Fields are separated by spaces, and each field refers to the following:

	date Date.

	time Time.

	c-ip Client IP.

	deny Denial condition.

OriginError Log

The OriginError log can be configured in global settings (server.xml).

server.xml - <Server><Cache>

<OriginErrorLog Type="size" Unit="5" Retention="5" Warning="OFF">ON</OriginErrorLog>

	<OriginErrorLog> (default: OFF, Type: size, Unit: 5, Warning: OFF)

Records errors that occur in the origin server for all virtual hosts. Errors can be either connection timeouts and reception timeouts, and results of origin server exclusion/recovery are also logged.

#Fields: date time vhostname level s-domain s-ip cs-method cs-uri time-taken sc-error sc-resinfo
2012.11.15 07:06:10 [example.com] [ERROR] 192.168.0.13 192.168.0.13 GET /Upload/ProductImage/stock/1716439_SM.jpg 20110 Connect-Timeout -
2012.11.15 07:06:26 [example.com] [ERROR] 192.168.0.13 192.168.0.13 GET /Upload/ProductImage/stock/1716439_SM.jpg 20110 Connect-Timeout -
2012.11.15 07:06:30 [example.com] [ERROR] 192.168.0.13 192.168.0.13 GET /Upload/ProductImage/stock/1716439_SM.jpg 20110 Connect-Timeout -
#2012.11.15 07:06:30 [example.com] 192.168.0.13 excluded from service
#2012.11.15 07:06:31 [example.com] Origin server list: 192.168.0.14
#2012.11.15 07:11:11 [example.com] 192.168.0.13 recovered back in service
#2012.11.15 07:11:12 [example.com] Origin server list: 192.168.0.13

Fields are separated by spaces, and each field refers to the following:

	date Date of error.

	time Time of error.

	vhostname [Virtual host].

	level [Error level (Error or Warning)].

	s-domain Origin server domain.

	s-ip Origin server IP.

	cs-method HTTP Method sent by STON to the origin server.

	cs-uri URI sent by STON to the origin server.

	time-taken Amount of time elapsed until the system error.

	sc-error Type of error.

	sc-resinfo Information of server response when error occurred (separated by commas).

If the Warning property is set to ON, HTTP communication errors will be logged as follows.

2012.11.15 07:09:03 [example.com] [WARNING] 10.10.10.10 121.189.63.219 GET /716439_SM.jpg 20110 PartialResponseOnNormalRequest Res=206,Len=2635
2012.11.15 07:09:03 [example.com] [WARNING] 10.10.10.10 121.189.63.219 GET /716439_SM.jpg 20110 ClosedWithoutResponse -

HTTP communication errors can occur in the following ways.

	ClosedWithoutResponse Connection closed by the origin server. HTTP response was not returned.

	ClosedWhenDownloading Connection closed by the origin server. Desired Content-Length was not downloaded.

	NotPartialResponseOnRangeRequest The response code to a Range request was not 206.

	DifferentContentLengthOnRangeRequest The requested Range and Content-Length were different.

	PartialResponseOnNormalRequest The response code to a non-Range request was 206.

SysLog Transfer

Logs can be forwarded to UDP in real time using the syslog [http://en.wikipedia.org/wiki/Syslog] protocol. All logs can be configured to be transferred via syslog.

server.xml - <Server><Cache>

<InfoLog SysLog="OFF">ON</InfoLog>
<DenyLog SysLog="OFF">ON</DenyLog>
<OriginErrorLog SysLog="OFF">ON</OriginErrorLog>

	SysLog
	OFF (default) syslog is not used.

	ON Uses the <SysLog> tag configured within the current tag to transfer logs.

The following is an example of configuring syslog when <OriginErrorLog> is being logged.

server.xml - <Server><Cache>

<OriginErrorLog SysLog="ON">
 <SysLog Priority="local3.info" Dest="192.168.0.1:514" />
 <SysLog Priority="user.alert" Dest="192.168.0.2" />
 <SysLog Priority="mail.debug" Dest="log.example.com" />
</OriginErrorLog>

	The SysLog property of <OriginErrorLog> is set to ON.

	The <SysLog> tag is created within <OriginErrorLog>. Logs can be transferred to any number of servers.

	The Priority property of <SysLog> is configured. This property is expressed with a combination of Facility Levels [http://en.wikipedia.org/wiki/Syslog#Facility_levels] and Severity levels [http://en.wikipedia.org/wiki/Syslog#Severity_levels].

	The Dest property of <SysLog> is configured. This is the syslog reception server, and the reception port can be omitted if it is 514.

The syslog example recorded from the above settings can be seen below. The syslog tag is recorded as STON/{log name}.

Mar 12 11:24:24 192.168.0.1 STON/ORIGINERROR: 2013-03-12 14:09:20 [ERROR] [example.com] - 192.168.0.14 GET /1.gifd 1996 Connect-Timeout -
Mar 12 11:24:24 192.168.0.1 STON/ORIGINERROR: 2013-03-12 14:09:22 [ERROR] [example.com] - 192.168.0.14 GET /favicon.ico 1995 Connect-Timeout -
Mar 12 11:24:24 192.168.0.1 STON/ORIGINERROR: 2013-03-12 14:09:24 [ERROR] [example.com] - 192.168.0.14 GET /1.gifd22 2020 Connect-Timeout -
Mar 12 11:24:24 192.168.0.1 STON/ORIGINERROR: #2013 .03.12 14:09:24 [example.com] 192.168.0.14:102 excluded from service
Mar 12 11:24:24 192.168.0.1 STON/ORIGINERROR: #2013 .03.12 14:09:24 [example.com] Origin server list:

Saving Virtual Host Logs

Logs are recorded separately for each virtual host. Even if the log is set to OFF, Log Trace will work as normal.

server.xml - <Server><VHostDefault>
vhosts.xml - <Vhosts><Vhost>

<Log Dir="/cache_log">
 ... (omitted) ...
</Log>

	<Log> The Dir property configures the directory in which the logs will be recorded. The logs are saved in virtual host directories that are created under the set directory.

DNS Log

If the origin server is set to a Domain, the results of Resolving are recorded in the DNS log.

server.xml - <Server><VHostDefault><Log>
vhosts.xml - <Vhosts><Vhost><Log>

<Dns Type="size" Unit="10" Retention="10" SysLog="OFF" Compression="OFF">ON</Dns>

#Fields: date time domain ttl ip-list ip-count time-taken result
2014-07-30 12:10:33 example.com 157 173.194.127.15,173.194.127.23,173.194.127.24,173.194.127.31 4 5007 success
2014-07-30 12:10:38 example.com 152 173.194.127.23,173.194.127.24,173.194.127.31,173.194.127.15 4 9 success
2014-07-30 12:11:03 example.com 127 173.194.127.31,173.194.127.15,173.194.127.23,173.194.127.24 4 15007 success
2014-07-30 12:12:53 example.com 17 173.194.127.15,173.194.127.23,173.194.127.24,173.194.127.31 4 6 success
2014-07-30 12:23:16 test.com 0 - 0 10008 fail
2014-07-30 12:23:21 test.com 0 - 0 5007 fail
2014-07-30 12:23:26 test.com 0 - 0 5011 fail
2014-07-30 12:24:38 example.com 152 173.194.127.23,173.194.127.24,173.194.127.31,173.194.127.15 4 9 success
2014-07-30 12:25:03 example.com 127 173.194.127.31,173.194.127.15,173.194.127.23,173.194.127.24 4 15007 success

Fields are separated by spaces, and each field refers to the following:

	date Date.

	time Time.

	domain Target domain.

	ttl Time to live (Time when record is valid).

	ip-list IP list.

	ip-count IP count.

	time-taken Runtime.

	result “success” or “fail”.

Access Log

Records the HTTP transactions of all clients. The log is recorded when an HTTP transaction ends, whether the transfer is completed or interrupted.

server.xml - <Server><VHostDefault><Log>
vhosts.xml - <Vhosts><Vhost><Log>

<Access Type="time" Unit="1440" Retention="10" XFF="on" Form="ston" Local="Off">ON</Access>

	XFF
	ON (default) Records values of the XFF (X-Forwarded For) header sent by the client together with the client IP. If there is no header, it will be the same as OFF.

	OFF Records the client IP.

	TrimCIP Records the client IP if there is no XFF header, but records the XFF header without the client IP if there is a header.

	Form
	ston (default) W3C standard + expansion field

	apache Apache format

	iis IIS format

	custom admin-log-access-custom

	Local
	OFF (default) Local communications (loopback) are not logged).

	ON Local communications (loopback) are logged.

#Fields: date time s-ip cs-method cs-uri-stem cs-uri-query s-port cs-username c-ip cs(User-Agent) sc-status sc-bytes time-taken cs-referer sc-resinfo cs-range sc-cachehit cs-acceptencoding session-id sc-content-length
2012.06.27 16:52:24 220.134.10.5 GET /web/h.gif - 80 - 61.50.7.9 Chrome/19.0.1084.56 200 98141 5 - Bypass+gzip+SSL3 - TCP_HIT gzip+deflate 7 1273735
2012.06.27 16:52:26 220.134.10.5 GET /favicon.ico - 80 - 61.50.7.9 Chrome/19.0.1084.56 200 949 2 - - - TCP_HIT gzip+deflate 35 14875
2012.06.27 17:00:06 220.168.0.13 GET /setup.Eexe - 80 - 61.168.0.102 Mozilla/5.0+(Windows+NT+6.1;+WOW64)+AppleWebKit/536.11+(KHTML,+like+Gecko)+Chrome/20.0.1132.57+Safari/536.11 206 20971800 7008 - - 398458880-419430399 TCP_HIT - 41 89764358

Fields are separated by spaces, and each field refers to the following:

	date Date of HTTP transaction completion.

	time Time of HTTP transaction completion.

	s-ip Server IP.

	cs-method HTTP Method sent by the client.

	cs-uri-stem URL sent by the client (excluding QueryString).

	cs-uri-query QueryString of the URL sent by the client.

	s-port Server port.

	cs-username Client username.

	c-ip Client IP. If XFF is set to ON, the X-Forwarded-For header is recorded with the IP.

	cs(User-Agent) HTTP User-Agent sent by the client.

	sc-status Server response code.

	sc-bytes Bytes sent from the server (header + content).

	time-taken Total elapsed time until an HTTP transaction is completed (ms).

	cs-referer HTTP Referer sent by the client.

	sc-resinfo Additional information, separated by the “+” character. If the service provides encoded content, the encoding option (gzip or deflate) is specified. For secured communications, the SSL protocol version (SSL3, TLS1, TLS1.1, TLS1.2) is specified. For bypassed communications, “Bypass” is specified.

	cs-range Records the Range header sent by the client.

	sc-cachehit Cache HIT results.

	cs-acceptencoding Accept-Encoding header sent by the client.

	session-id HTTP client sesion ID (unsigned int64).

	sc-content-length Value of server response Content-Length header.

The access log records all HTTP transactions regardless of the success or failure of the transfer. An HTTP transaction begins when a client sends an HTTP request. If the HTTP connection is closed before STON sends a response to the client, then the transaction will still be considered completed. Both sc-status and sc-bytes will be recorded as 0. A log like this is recorded when the client closes the connection before the STON receives a response from the origin server.

Custom Access Log Format

The format of the access log can be customized.

server.xml - <Server><VHostDefault><Log>
vhosts.xml - <Vhosts><Vhost><Log>

<Access Form="custom">ON</Access>
<AccessFormat>%a %A %b id=%{userid}C %f %h %H "%{user-agent}i" %m %P "%r" %s %t %T %X %I %O %R %e %S %K</AccessFormat>

	<Access> The Form property is set to custom.

	<AccessFormat> The custom log format.

With the above configuration, the access log will be recorded as follows. (#Fields are not recorded.)

192.168.0.88 192.168.0.12 163276 id=winesoft; image.jpg example.com HTTP "STON" GET 80 "GET /ston/image.jpg?type=png HTTP/1.1" 200 2014-04-03 21:21:54 1 C 204 163276 1 2571978 TCP_MISS HTTP/1.1
192.168.0.88 192.168.0.12 63276 id=winesoft; vod.mp4 example.com HTTP "STON" POST 80 "GET /ston/vod.mp4?start=10 HTTP/1.1" 200 2014-04-03 21:21:54 12 C 304 363276 2 2571979 TCP_REFRESH_HIT HTTP/1.1
192.168.0.88 192.168.0.12 3634276 id=ston; news.html example.com HTTPS "STON" GET 443 "GET /news.html HTTP/1.1" 200 2014-04-03 21:21:54 30 X 156 2632576 1 2571980 TCP_MISS HTTP/1.1
192.168.0.88 192.168.0.12 6332476 id=winesoft; style.css example.com HTTP "STON" HEAD 80 "GET /style.css HTTP/1.1" 200 2014-04-03 21:21:54 10 X 234 653276 2 2571981 TCP_REFRESH_HIT HTTP/1.1
192.168.0.88 192.168.0.12 6276 id=ston; ui.js example.com HTTP "STON" GET 80 "GET /ui.js HTTP/1.1" 200 2014-04-03 21:21:54 1 X 233 63276 1 2571982 TCP_MISS HTTP/1.1
192.168.0.88 192.168.0.12 626 id=winesoft; hls.m4u8 example.com HTTP "STON" GET 80 "GET /hls.m4u8 HTTP/1.1" 200 2014-04-03 21:21:54 2 X 124 6312333276 2 2571983 TCP_REFRESH_HIT HTTP/1.1

This configuration was developed based on the Apache log format [https://httpd.apache.org/docs/2.2/ko/mod/mod_log_config.html] and there are several expansion fields. There is no restriction to the delimiters that can be used, but quotation marks (”...”) should be used for items that may include spaces, such as a User-Agent.

	%...a Client IP.

192.168.0.66

	%...A Server IP Address.

192.168.0.14

	%...b Byte size of transfer, excluding the HTTP header.

1024

	%...{foobar}C The content of the “foobar” cookie in the request received by the server.

If input as %{id=}c, the cookie value corresponding to id= is recorded.

	%...D Elapsed time to process the request (ms).

3000

	%...f File name.

If /mp4/iu.mp4, iu.mp4 will be recorded.

	%...h HostName.

example.com

	%...H Request protocol.

http or https

	%...{foobar}i The content of the “foobar” header in the request received by the client.

If input as %{User-Agent}i, the User-Agent value is recorded.

	%...m Request Method.

GET or POST or HEAD

	%...P Server PORT

80

	%...q QueryString

Id=10&value=20

	%...r The first line of the request (Request Line).

GET /img.jpg HTTP/1.1

	%...s Response code.

200

	%...t STON default time format.

2014-01-01 15:27:02

	%...{format}t Date shown using “format”.

If input as %{%Y-%m-%d %H:%M:%S}T, the output will be 2014-08-07 06:12:23.

	%...T TimeTaken (sec).

10

	%...U ShortURI.

/img/img.jpg

	%...u FullURI.

/img/img.jpg?session=1232&id=37

	%...X Status when transaction is completed.

	X Closed before the response is completed.

	C Response is completed.

C

	%...I Received bytes, including the request header.

2048

	%...O Received bytes, including the response header.

2048

	%...R Response time (ms).

2

	%...e Session-ID.

1

	%...S Cache HIT results.

TCP_HIT

	%...K Request HTTP version.

HTTP/1.1

	%...y Request HTTP header size.

488

	%...z Response HTTP header size.

362

If there is no value for the configured field, it will be recorded as “-”. If the format is wrong, the STON default format (Form=”ston”) will be used instead.

The ”...” in the above notations for the fields (e.g. %h %U %r %b) can be left blank, or a condition for recording can be used. If the condition is not met, “-” will be recorded. HTTP status codes can be used for conditions, and exclamation points (!) can be used for NOT conditions.

The following example only records a User-Agent when there is a 400 (Bad Request) or a 501 (Not Implemented) response.

"%400,501{User-agent}i"

The following example logs Referers for all abnormal responses.

"%!200,304,302{Referer}i"

Origin Log

Records all HTTP transactions in the origin server. The log is recorded when an HTTP transaction ends, whether the transfer is completed or interrupted.

server.xml - <Server><VHostDefault><Log>
vhosts.xml - <Vhosts><Vhost><Log>

<Origin Type="time" Unit="1440" Retention="10" Local="Off">ON</Origin>

#Fields: date time cs-sid cs-tcount c-ip cs-method s-domain cs-uri s-ip sc-status cs-range sc-sock-error sc-http-error sc-content-length cs-requestsize sc-responsesize sc-bytes time-taken time-dns time-connect time-firstbyte time-complete cs-reqinfo cs-acceptencoding sc-cachecontrol s-port sc-contentencoding session-id session-type
2012.06.27 17:40:00 357 899 192.168.0.13 GET i.example.com /t/2.gif 115.71.9.136 200 - - - 3874 197 271 3874 20 0 0 17 3 - gzip+deflate - 80 gzip 7 cache
2012.06.27 17:40:00 357 900 192.168.0.13 GET i.example.com /ex1.gif 115.71.9.136 200 - - - 5673 223 272 5673 24 0 0 21 3 - - - 80 - 8 cache
2012.06.27 17:40:00 357 901 192.168.0.13 GET i.example.com /exB.jpg 115.71.9.136 200 - - - 8150 189 273 8150 13 0 0 9 4 Bypass - - 80 - 7 cache
#[ERROR:01] 2012.06.27 17:40:01 220.73.216.5 220.73.216.5 GET /web/nmb/img/main/v1/h1.gif 1824 Connect-Timeout - 11 cache
2012.06.27 17:40:00 357 901 192.168.0.13 GET i.example.com /exB1.jpg 115.71.9.136 200 - - - 8150 189 273 8150 13 0 0 9 4 - max-age=3600 80 - 12 cache
2012.06.27 17:40:00 357 901 192.168.0.13 GET i.example.com /exB2.jpg 115.71.9.136 200 - - - 8150 189 273 8150 13 0 0 9 4 - no-cache 80 - 35 cache
2012.06.27 17:40:00 357 901 192.168.0.13 GET i.example.com /exB3.jpg 115.71.9.136 200 - - - 8150 189 273 8150 13 0 0 9 4 - - 80 - 35 cache

If there is an origin server failure, an error log starting with #[ERROR:xx] will be recorded. Fields are separated by spaces, and each field refers to the following:

[image: ../_images/time_taken.jpg]
Origin time measurements

	date Date of HTTP transaction completion.

	time Time of HTTP transaction completion.

	cs-sid Session unique ID. HTTP transactions processed (recycled) by the same session will have the same value.

	cs-tcount Transaction count. Records how many transactions the current session has processed. Transactions with the same cs-sid value cannot have the same cs-tcount value.

	c-ip STON IP.

	cs-method HTTP Method sent to the origin server.

	s-domain Origin server domain.

	cs-uri URI sent to the origin server.

	s-ip Origin server IP.

	sc-status Origin server HTTP response code.

	cs-range Value of Range request sent to the origin server.

	sc-sock-error Socket error code (1=Transfer timeout, 2=Transfer delay, 3=Connection close).

	sc-http-error Log of response code when origin server returns either 4xx or 5xx responses.

	sc-content-length Content Length sent by the origin server.

	cs-requestsize (unit: bytes) Size of the HTTP request header sent to the origin server.

	sc-responsesize (unit: bytes) Size of the HTTP header of the origin server’s response.

	sc-bytes (unit: bytes) Received content size (header excluded).

	time-taken (unit: ms) Total elapsed time until the HTTP transaction is completed. If the session is not recycled, the socket connection time is included.

	time-dns (unit: ms) Elapsed time during DNS query.

	time-connect (unit: ms) Elapsed time until a socket is established with the origin server.

	time-firstbyte (unit: ms) Elapsed time from a sent request to a received response.

	time-complete (unit: ms) Elapsed time from the first response to completion.

	cs-reqinfo Additional information. Separated by the “+” character. Recorded as “Bypass” for bypass communications and “PrivateBypass” for private bypass communications.

	cs-acceptencoding Recorded as “gzip+deflate” if compressed content is requested from the origin server.

	sc-cachecontrol Cache-control header sent by the origin server.

	s-port Origin server port.

	sc-contentencoding Content-Encoding header sent by the origin server.

	session-id HTTP client session ID that created the origin server request (unsigned int64).

	session-type Session type requested from the origin server.
	cache Sessions used for caching.

	recovery Sessions used for recovery in Error Detection and Recovery.

	healthcheck Sessions used by Health-Checker.

Monitoring Log

Records the average statistics of the last five minutes.

server.xml - <Server><VHostDefault><Log>
vhosts.xml - <Vhosts><Vhost><Log>

<Monitoring Type="size" Unit="10" Retention="10" Form="json">ON</Monitoring>

	Form Assigns the log format. (json or xml)

FileSystem Log

Records all File I/O transactions generated using the Chapter 17. File System.

server.xml - <Server><VHostDefault><Log>
vhosts.xml - <Vhosts><Vhost><Log>

<FileSystem Type="time" Unit="1440" Retention="10">ON</FileSystem>

Logging occurs when the File I/O transaction is completed. The time of completion differs based on the type of cs-method.

#Fields: date time cs-method cs-path sc-status sc-bytes response-time time-taken sc-cachehit attr session-id
2012.06.27 16:52:24 ATTR /t 200 0 100 100 TCP_HIT FOLDER 1
2012.06.27 16:52:24 ATTR /t/2.gif 200 0 100 100 TCP_HIT FILE 1
2012.06.27 16:52:24 OPEN /file.txt 200 0 100 2000 TCP_HIT FILE 2
2012.06.27 16:52:24 READ /file.txt 200 1024768 100 2000 TCP_HIT FILE 2

	date Date of File I/O transaction completion.

	time Time of File I/O transaction completion.

	cs-method File I/O access type. One of the following three can be used:

	ATTR getattr function call. Logs when the function is returned.

	OPEN File is opened but not READ. Logs when the file is closed.

	READ File is opened and READ. Logs when the file is closed.

	cs-path Access path.

	sc-status Response code. The following show the failure codes, as well as the code for normal service (200).

	200 Normal service.

	301 Bypass required.

	302 Service denied.

	303 Redirect required.

	400 Invalid request.

	401 Unable to find the virtual host.

	402 Initialization failure from the origin server.

	500 Object initialization failure.

	501 Object open failure.

	502 Save path generation failure.

	503 Memory initialization failure.

	504 Emergency status.

	600 Timeout during file service standby.

	601 Timeout during file data service standby.

	602 File initialization failure during file service standby.

	603 Data initialization failure during file data service standby.

	701 Invalid offset.

	702 Specific file section load failure.

	703 Not enough memory.

	704 Origin session generation failure.

	sc-bytes Read byte size.

	response-time Elapsed time from the function call to the connection to the service object.

	time-taken Elapsed time from the function call to the completion of the File I/O transaction.

	sc-cachehit Cache HIT results.

	attr FILE or FOLDER.

	session-id File I/O session ID (unsigned int64).

Note

session-id is assigned when the Client (HTTP or File I/O) Context is generated. In the general file process flow of Open -> Read -> Close, the Client Context is constructed at Open and destructed at Close. On the other hand the getattr function is an “atomic function”, so the Client Context is created/destructed every time, and a new session-id is always assigned.

FTP Transfer

When the log is rolled, it is also uploaded using the designated FTP client.

FTP Client

Configures the FTP client. Rolled logs are uploaded to the FTP server in real time.

[image: ../_images/conf_ftpclient.png]
FTP client structure and operation.

FTP clients exist outside of STON, as seen in the image above. STON is responsible for inputting logs stored locally into the FTP client queue, and has no effect on FTP operation. The FTP client can then process the uploads based on its own configuration.

The FTP clients can be configured in global settings (server.xml).

server.xml - <Server>

<Ftp Name="backup1">
 <Mode>Passive</Mode>
 <Address>ftp.winesoft.co.kr:21</Address>
 <Account>
 <ID>test</ID>
 <Password>12345abc</Password>
 </Account>
 <ConnectTimeout>10</ConnectTimeout>
 <TransferTimeout>600</TransferTimeout>
 <TrafficCap>0</TrafficCap>
 <DeleteUploaded>OFF</DeleteUploaded>
 <BackupOnFail>OFF</BackupOnFail>
 <UploadPath>/log_backup/%v/%s-%e.%p.log</UploadPath>
 <Transfer Time="Rotate" />
</Ftp>

<Ftp Name="backup2">
 <Mode>Active</Mode>
 <Address>192.168.0.14:21</Address>
 <Account>
 <ID>test</ID>
 <Password>qwerty</Password>
 </Account>
 <ConnectTimeout>3</ConnectTimeout>
 <TransferTimeout>100</TransferTimeout>
 <TrafficCap>10240</TrafficCap>
 <DeleteUploaded>ON</DeleteUploaded>
 <BackupOnFail>ON</BackupOnFail>
 <Transfer Time="Static">04:00</Transfer>
</Ftp>

	<Ftp> Configures FTP clients. Individual names can be configured with the Name property.

	Mode (default: Passive) Connection mode (Passive or Active).

	Address FTP address.

	Account FTP account. To encrypt the password (e.g. qwerty), the API below can be used.

/command/encryptpassword?plain=qwerty

The encrypted password can then be configured as follows.

<Password Type="enc">dXR9k0xNUZVVYQsK5Bi1cg==</Password>

	ConnectTimeout Connection pending time.

	TransferTimeout Transfer pending time.

	TrafficCap (unit: KB) If set to greater than 0, the maximum transfer bandwidth is configured.

	DeleteUploaded (default: OFF) Deletes the corresponding log after transfer completion.

	BackupOnFail (default: OFF) Backs up the corresponding log in the following path so that the log is not deleted on a transfer failure.

/usr/local/ston/stonb/backup/

Backup logs are not retransmitted and will not be deleted unless done deliberately by the administrator.

	UploadPath Configures the upload path.
If not configured, the path becomes “/virtual host/”. For example, logs for example.com are uploaded to the /example.com/ directory.

	%{time format}s Log start time.

	%{time format}e Log end time.

	%p Prefix.

	%v Virtual host name.

	%h Device HOST name.

For example, if the following configuration is used,

server.xml - <Server><Ftp>

<UploadPath>/log_backup/%v/%s-%e.%p.log</UploadPath>

the upload path will be as follows.

/log_backup/example.com/200140722_0000-200140722_2300.access.log

	Transfer Determines the log transfer time. The Type property determines the format of the value.

	Rotate (default) Transfers the log immediately after rolling. Does not require a value.

	Static Transfers the log once a day at a specific time. For example, if set to 04:00, a transfer will occur every day at 4 am.

	Interval Transfers the log after every set interval of time. For example, if set to 4, a transfer will occur every four hours.

It is important to configure a proper logging policy to ensure that rolling does not occur while logs are being transferred.

FTP clients use curl.

FTP Log

FTP logs are merged and saved in /usr/local/ston/sys/stonb/stonb.log.

#Fields: date time local-path cs-url file-size time-taken sc-status sc-error-msg
2014-04-23 17:10:20 /ston_log/winesoft.co.kr/origin_20140423_080000.log ftp://ftp.winesoft.co.kr:21/winesoft.co.kr/origin_20140423_080000.log 381 10006 fail "curl: (7) couldn't connect to host"
2014-04-23 17:10:20 /ston_log/winesoft.co.kr/access_20140423_1700.log ftp://192.168.0.14:21/winesoft.co.kr/access_20140423_1700.log 260 60 success "-"
2014-04-23 17:11:00 /ston_log/winesoft.co.kr/origin_20140423_080000.log ftp://ftp.winesoft.co.kr:21/winesoft.co.kr/origin_20140423_080000.log 381 10008 fail "curl: (7) couldn't connect to host"
2014-04-23 17:11:00 /ston_log/winesoft.co.kr/filesystem_20140423_080000.log ftp://192.168.0.14:21/winesoft.co.kr/filesystem_20140423_080000.log 179 60 success "-"

Fields are separated by spaces, and each field refers to the following:

	date Date.

	time Time.

	local-path Local path of the log to be transferred.

	cs-url FTP address to transfer the log to.

	file-size Transfer file size.

	time-taken (unit: ms) Elapsed time of transfer.

	sc-status Transfer success/failure.

	sc-error-msg Curl error message on transfer failure.

Log FTP Transfer

When the log is rolling, the designated FTP client will be used to upload the log. If separated by commas, multiple FTP clients can be used at the same time.

server.xml - <Server><VHostDefault>
vhosts.xml - <Vhosts><Vhost>

<Log>
 <Access Ftp="backup1, backup2">ON</Access>
 <Origin Ftp="backup_org">ON</Origin>
 <Monitoring Ftp="backup1">ON</Monitoring>
 <FileSystem Ftp="backup2">ON</FileSystem>
</Log>

	Ftp The FTP client to be used.

The log is uploaded to ftp://{FTP server address}/{virtual host name}/{rolled log name}. For example, the upload address of the rolled log “access_20140424_0000.log” of the virtual host “example.com” in the server “ftp.dummy.com” will be ftp://ftp.dummy.com/example.com/access_20140424_0000.log.

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STON Edge Server 2.3.4 documentation

Chapter 13. WM (Web Management)

This chapter will introduce Web Management (WM), a tool for web management using an API. Using WM, not only can you intuitively set up the service, you can also organize clusters to manage a large number of STON instances together.

When STON is installed, WM is installed in the /usr/local/ston/wm directory. WM is implemented with Apache 2.2.24 + PHP 5.3.24. Because WM uses Apache, you can change the settings (e.g. HTTPS) as desired by editing the /usr/local/ston/wm/confg/httpd.conf file. WM and STON are not strongly connected. As in the figure below, WM uses STON configuration files and API to set the behavior of STON.

[image: ../_images/wm_compose.jpg]
WM uses STON configuration files and API.

There may exist better management techniques that improve on WM using a similar method.

Connection

WM uses port 8500 by default. If the IP of STON is set to 192.168.0.100, the WM connection address will be http://192.168.0.100:8500. As previously mentioned, this can be customized by editing the httpd.conf file.

[image: ../_images/wm_login.jpg]
WM Start Page

Account

The default account is set to [ID: admin, Password: ston]. If the login succeeds, the dashboard page will be displayed, showing the general status of STON.

[image: ../_images/wm_main.jpg]
WM Dashboard

Update to Latest Version

When a new version is released, an “Update Available” message will be shown as seen below.

[image: ../_images/wm_update_info.png]
A new update is available.

Clicking the message brings you to a page where you can update to the latest version. Depending on the status of the service, the safety level of performing the update will be shown.

[image: ../_images/wm_update_page_alert.png]
WM Update could be dangerous.

When the update is completed, all services will automatically restart.

Menu Structure

Drop-down menus can be expanded/shrunk with mouse clicks.

[image: ../_images/wm_menu.jpg]
WM Menu

	
	Global Settings

	All functions except for virtual host default settings can be configured in global settings (server.xml).

	
	Virtual Host Management

	You can add/suspend/delete virtual hosts and view the status of all virtual hosts in the service.

	
	Cluster

	You can create/manage/destruct clusters, and all services in a cluster can be viewed by servers and services.

	
	Content Control

	You can control the content in the service with functions such as Purge.

	
	Server Status

	You can monitor global settings such as the system status. All graphs use global resource graphs.

	
	Service Status

	You can monitor the service status of virtual hosts. All graphs use virtual host graphs.

	
	File System

	STON can be mounted on Linux VFS.

Global Settings

All functions except for virtual host default settings can be configured in global settings (server.xml).

[image: ../_images/wm_conf_global1.png]
WM Global Settings - General

Virtual Host Management

All virtual hosts in the service can be configured in detail, and new virtual hosts can be added. All virtual hosts that aren’t configured independently will use the settings of the default virtual host (VHostDefault). This concept is identical to inheritance on object-oriented programming. The virtual hosts can override most parameters.

New

Creates a new virtual host for the service. If a cluster is configured, then multiple virtual hosts can be created in every server at the same time. All virtual hosts will inherit from the default virtual host (VHostDefault), so a virtual host can be ready to enter the service after only setting its name and origin server address. There are eight different sub-options that can be expanded with the Expand button to show more detailed settings.

[image: ../_images/wm_vhost_new1.png]
WM Virtual Host Management - New

List

You can monitor the status of all virtual hosts that are a part of the service. You can also start/stop each virtual host. If a cluster is configured, you can control the virtual hosts of all servers at the same time. The default virtual host can also be selected.

[image: ../_images/wm_vhost_list.png]
WM Virtual Host Management - List

Detailed Configuration

Here you can configure the default virtual host (VHostDefault) or individual virtual hosts. A virtual host can be selected after selecting the combo box in the upper left corner. “Default Virtual Host” is the default configurations that all virtual hosts will inherit. Therefore, any configurations that do not override this will be affected by changes to the “Default Virtual Host”.

[image: ../_images/wm_vhost_conf1.png]
WM Virtual Host Configuration - Top Menu

As in the above figure, there are many submenus, with the selected submenu colored red. Clicking on each menu will load a detailed configuration page, as shown in the figure below. All configurations will be reflected after “Apply” or “Apply to All Clusters” is clicked.

[image: ../_images/wm_vhost_conf_sub1.png]
WM Virtual Host Configuration - Origin Server

Almost all items in this section can be overridden, so you should have a through understanding of how it works. For example, if the TTL value of the default virtual host is set to 60, all virtual hosts will inherit this value. However, if this value is overridden, the corresponding virtual host will use the overridden TTL value.

[image: ../_images/wm_vhost_conf_sub_ttl.png]

The three possibilities are explained below.

	
	Override with another value

	While the default TTL is 60, the service for User A will use the overridden value of 180. This will not be affected by any changes to the default virtual host.

	
	Override with the same value

	Though the values are the same, this will be processed as an override and the service for User B will use the overridden value of 60. However, even if the default virtual host’s TTL is changed to 30, this will not affect User B’s overridden setting of 60.

	
	Do not override

	If a specific value is omitted, the service for User C will use the default value of 60. If the default virtual host’s TTL is changed to 30, the TTL used for User C will also change to 30.

In WM, colors are used to identify overrides. A white background identifies inheritance of the default virtual host configuration. Overridden values use an apricot background to distinguish it from default values. All override settings have an X button on the right, which will remove the override when clicked.

Cluster

Multiple instances of STON can be merged into one cluster for integrated management/operation. All instances of STON are configured to have equal authority, so logging into any instance in the cluster will allow you to manage the entire cluster.

Structure

A cluster can be created, or a server can be added to an existing cluster. Adding to a cluster requires authentication for the WM account. If WM is configured with identical account information (ID and password), the authentication procedure is skipped.

[image: ../_images/wm_cluseter1.png]
Creating a new cluster.

[image: ../_images/wm_cluseter2.png]
Cluster list.

When a cluster is set up, the “Apply to All Clusters” button can be used when managing virtual hosts to configure multiple hosts at the same time. In addition, you can duplicate and apply configurations from one server to another in the same server. If you want to put a server into a different cluster, it must be removed and reconfigured.

Cluster Port

When first configured, WM will use the same port as the cluster. Though it has the benefit of allowing clustering with only the WM account, this can pose problems in the restriction of access IPs.

	For security purposes, WM places a restriction so that only designated IPs can access it.

	All servers must specifically allow the IPs of the other servers to allow clustering.

	If there are too many servers or the server IPs are dynamic, it would be virtually impossible to properly fill out the IP list.

This problem can be resolved by using a separate port for clustering. Servers can then recognize each other not with a license file separate from the WM account. Clusters will only be possible between servers with the same license, which increases security.

1. [Apache server] httpd.conf Multi-port configuration

(For default installation) Open /usr/local/ston/wm/conf/httpd.conf and add ports as shown below.

[image: ../_images/wm_cluster_multiport.png]

After saving, restart the Apache server to put the changes into effect.

2. [WM] Clustering

If multi-port configuration was successful, the “Allocate Clustering Port” button can be found.

[image: ../_images/wm_cluster_multiport1.png]

Click the button.

3. [WM] Cluster Port Selection

A list of ports that can be used will be shown. Select a port to configure.

[image: ../_images/wm_cluster_multiport2.png]

All servers in the same cluster must use the same port.

Server Status

The status and service condition of all STON servers in a cluster can be checked. You can click on each item in the server list to view detailed information.

[image: ../_images/wm_cluseter3_2.png]
Status for each server.

Virtual Host Status

The MRTG of all virtual hosts in the cluster can be put together in one screen and checked. The virtual hosts can all be started/stopped at the same time. You can click on each item in the virtual host list to view detailed information.

[image: ../_images/wm_cluseter4.png]
Status for each virtual host.

Content Control

You can browse/control content currently in the service or perform cleanup. If a cluster is configured, content in all of the servers can be browsed or controlled at the same time.

[image: ../_images/wm_ctrl2.png]
Caching status check

[image: ../_images/wm_ctrl3.png]
API call (e.g. Purge)

System Information

You can look into the system information of the server in operation.

[image: ../_images/wm_gstat1.png]

Service Status

You can monitor the service status of each virtual host.

[image: ../_images/wm_vstat3.png]
Service status of virtual host.

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STON Edge Server 2.3.4 documentation

Chapter 14. Advanced Virtual Host Configuration

This chapter will discuss advanced topics related to virtual host configuration.

Each virtual host is supposed to match its origin. (a domain or an IP) But sometimes a virtual host has to be connected to others, or the other way round. Depending on functionalities, Client Statistics / Access Log policies might be different.

URL Preprocessing

Regular expressions [http://en.wikipedia.org/wiki/Regular_expression] are used to modify the requested URLs. If URL preprocessing is defined, all client requests (HTTP or File I/O) must pass through the URL Rewriter.

[image: ../_images/urlrewrite1.png]
The request can only reach the virtual host by passing through the URL Rewriter.

If an approaching Host name is modified by the URL Rewriter, then it will consider it as if the Host header was modified by the client’s HTTP request. URL preprocessing is configured in the virtual host settings (vhosts.xml). While most settings are under the virtual host, URL preprocessing can change the name of the Host requested by the client, so the settings must be on the same level as the virtual host.

vhosts.xml

<Vhosts>
 <Vhost ...> ... </Vhost>
 <Vhost ...> ... </Vhost>
 <URLRewrite ...> ... </URLRewrite>
 <URLRewrite ...> ... </URLRewrite>
</Vhosts>

Multiple configurations are allowed, and the regular expressions will be checked in order.

vhosts.xml - <Vhosts>

<URLRewrite AccessLog="Replace">
 <Pattern>www.example.com/([^/]+)/(.*)</Pattern>
 <Replace>#1.example.com/#2</Replace>
</URLRewrite>

	<URLRewrite>

Configures URL preprocessing.
AccessLog (default: Replace) Configures URLs that will be recorded in the Access log. Replace records URLs after processing (/logo.jpg), while Pattern records URLs after processing (/baseball/logo.jpg).

	<Pattern> Configures the patterns to be matched. A single pattern is expressed with parentheses ().

	<Replace> Configures the conversion format. Patterns that match can be used with expressions like #1 and #2. #0 stands for the entire requested URL. A maximum of nine patterns (up to #9) can be configured.

Throughput is provided by Chapter 10. Monitoring & Statistics and can also be checked via Successful URL Preprocessing. URL preprocessing can work alongside Trimming and MP4 HLS to simplify expressions further.

vhosts.xml - <Vhosts>

<URLRewrite>
 <Pattern>example.com/([^/]+)/(.*)</Pattern>
 <Replace>example.com/#1.php?id=#2</Replace>
</URLRewrite>
// Pattern : example.com/releasenotes/1.3.4
// Replace : example.com/releasenotes.php?id=1.3.4

<URLRewrite>
 <Pattern>example.com/download/(.*)</Pattern>
 <Replace>download.example.com/#1</Replace>
</URLRewrite>
// Pattern : example.com/download/1.3.4
// Replace : download.example.com/1.3.4

<URLRewrite>
 <Pattern>example.com/img/(.*\.(jpg|png).*)</Pattern>
 <Replace>example.com/#1/STON/composite/watermark1</Replace>
</URLRewrite>
// Pattern : example.com/img/image.jpg?date=20140326
// Replace : example.com/image.jpg?date=20140326/STON/composite/watermark1

<URLRewrite>
 <Pattern>example.com/preview/(.*)\.(mp3|mp4|m4a)$</Pattern>
 <Replace><![CDATA[example.com/#1.#2?&end=30&boost=10&bandwidth=2000&ratio=100]]></Replace>
</URLRewrite>
// Pattern : example.com/preview/audio.m4a
// Replace : example.com/audio.m4a?end=30&boost=10&bandwidth=2000&ratio=100

<URLRewrite>
 <Pattern>example.com/(.*)\.mp4\.m3u8$</Pattern>
 <Replace>example.com/#1.mp4/mp4hls/index.m3u8</Replace>
</URLRewrite>
// Pattern : example.com/video.mp4.m3u8
// Replace : example.com/video.mp4/mp4hls/index.m3u8

<URLRewrite>
 <Pattern>example.com/(.*)_(.*)_(.*)</Pattern>
 <Replace>example.com/#0/#1/#2/#3</Replace>
</URLRewrite>
// Pattern : example.com/video.mp4_10_20
// Replace : example.com/example.com/video.mp4_10_20/video.mp4/10/20

If one of the five special XML characters are used, then the pattern must be surrounded with a <![CDATA[...]]> tag. If configured using Chapter 13. WM (Web Management), all patterns are processed as CDATA.

Facade Virtual Host

Because <Alias> is just a nickname for the virtual host, it will not provide separate statistics and logs. If you want to use the same virtual host but obtain different Client Statistics and Access Log depending on the domain, a Facade Virtual Host can be configured.

vhosts.xml - <Vhosts>

<Vhost Name="example.com">
 ...
</Vhost>

<Vhost Name="another.com" Status="facade:example.com">
 ...
</Vhost>

This can be done by inputting facade: + virtual host into the Status property. In the previous example, the Client Statistics and Access Log will be recorded for clients that request another.com, not example.com.

Sub-Path

A single virtual host can have different sub-paths. These sub-paths can be configured to be handled by separate virtual hosts.

vhosts.xml - <Vhosts>

<Vhost Name="sports.com">
 <Sub Status="Active">
 <Path Vhost="baseball.com">/baseball/<Path>
 <Path Vhost="football.com">/football/<Path>
 <Path Vhost="photo.com">/*.jpg<Path>
 </Sub>
</Vhost>

<Vhost Name="baseball.com" />
<Vhost Name="football.com" />
<Vhost Name="photo.com" />

	If the page path or pattern matches the <Sub> input, then it will be sent to the corresponding virtual host. If they do not match, then the page will be handled by the current virtual host.

	Status (default: Active) Sub-paths are ignored when inactive.

	<Path> If the URI requested by the client and the path match, the request will be sent to Vhost. Only paths or patterns are allowed.

<Path Vhost="baseball.com">baseball<Path>
<Path Vhost="photo.com">*.jpg<Path>

If input as above, they will be parsed as /baseball/ and /*.jpg, respectively.

For example, if the client requests the following, the request will be sent to the football.com virtual host.

GET /football/rank.html HTTP/1.1
Host: sports.com

Redirect Tracing

When the origin server responds with the Redirect responses (301, 302, 303, 307), the location header is tracked to request the content.

[image: ../_images/conf_redirectiontrace.png]
The redirection is hidden from the client.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<RedirectionTrace>OFF</RedirectionTrace>

	<RedirectionTrace>
	OFF (default) Saved as 3xx responses.

	ON Downloads content from the address specified in the location header.

 Works only if matched to the format or with a valid Location header.
 Traced only once to prevent infinite redirects.

Virtual Host Link

Even if the content is distributed across multiple origins, the service is still operable as if the content were integrated using virtual host links.
It is particularly useful in environments where content is scattered due to on-premise to cloud storage migration, storage capacity, and cost.

[image: ../_images/adv_vhost_link.png]
Content missing from cloud.com is delivered by nas.com.

vhosts.xml - <Vhosts><Vhost>

<VhostLink Condition="...">...</VhostLink>

	<VhostLink> The virtual host name to delegate requests to. If the original response to the content satisfies `` Condition``, the request is delegated to the specified virtual host. Only one can be set.
	Condition HTTP response code / pattern (1xx, 2xx, 3xx, 4xx, 5xx), fail (If failed to cache from source)

Even if the client request is delegated to another virtual host, the: ref: monitoring_stats_vhost_client and: ref:` admin-log-access` are recorded in the virtual host accessed by the client.

Note

Please note that if the virtual hosts’ configurations in the link are different from each other, it may operate in unintentional ways.

 If the virtual host link is concatenated with A (simple caching) -> B (image compression)
 Images processed in A are not compressed, but images processed in B are compressed.

For example, if you are moving content from nas.com to cloud.com, you can only send requests to nas.com for content not on cloud.com (= 404 Not Found).
In the following cases: ref: monitoring_stats_vhost_client and: ref:` admin-log-access` are recorded on cloud.com, even if the request is handled by nas.com.

vhosts.xml - <Vhosts>

// Content not on cloud.com (= 404 Not Found) will be served on nas.com.
<Vhost Name="cloud.com">
 <VhostLink Condition="404">nas.com</VhostLink>
</Vhost>

<Vhost Name="nas.com">
</Vhost>

The vhostlink field of: ref: admin-log-access will tell you which virtual host the client request was processed on.
“-” means the request is not linked, and “nas.com” means that the request has been linked and processed at nas.com.

#Fields: date time s-ip cs-method cs-uri-stem …(…)… vhostlink
2016.11.24 16:52:24 220.134.10.5 GET /web/h.gif …(…)… -
2016.11.24 16:52:26 220.134.10.5 GET /favicon.ico …(…)… nas.com

If the link has occurred multiple times, all virtual hosts linked with “+” delimiters are specified.
In this case, the last virtual host is the virtual host that processed the last request.

You can link multiple virtual hosts to different conditions as follows:

 # vhosts.xml - <Vhosts>

// When the origin server responds with 5xx or fails to cache (= fail), it delegates the request to bar.com.
 <Vhost Name="foo.com">
 <VhostLink Condition="5xx,fail">bar.com</VhostLink>
 </Vhost>

 // Delegates the request to helloworld.com when the origin server responds with 4xx.
 <Vhost Name="bar.com">
 <VhostLink Condition="4xx">helloworld.com</VhostLink>
 </Vhost>

 // When the origin server responds with 403, 404, or 5xx, it delegates the request to example.com.
 <Vhost Name="helloworld.com">
 <VhostLink Condition="403,404,5xx">example.com</VhostLink>
 </Vhost>

 // Does not delegate any more.
 <Vhost Name="example.com">
 </Vhost>

[image: ../_images/adv_vhost_link_worst.png]
It might look akward but not impossible.

In the above example, the: ref: admin-log-access of foo.com looks like this:

#Fields: date time s-ip cs-method cs-uri-stem …(…)… vhostlink
2016.11.24 16:52:24 220.134.10.5 GET /test.jpg …(…)… bar.com+helloworld.com+example.com

In the following cases, the link is immediately terminated.

	If the target virtual host does not exist (foo.com ->?)

	If you specified yourself as the destination virtual host (foo.com -> foo.com)

	If a recursive link occurs (foo.com -> bar.com -> foo.com)

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STON Edge Server 2.3.4 documentation

Chapter 14. Access Control

This chapter will explain how to deny access to unwanted clients. Denying access can be done by setting up a blacklist in the Access Control List (ACL), but for the sake of convenience, a whitelist can also be configured.

Access control can be divided into server access control, which occurs during connection, and virtual host access control, which can be configured for each virtual host. Because the access time and standards are different for each level, it is important to choose what is most effective. All access control is logged.

Server Access Control

When the client connects to the server, the server decides whether to deny access based on the IP address. As this occurs during connection, the process is decisive and swift. This can be configured in global settings (server.xml) and has the highest priority.

server.xml - <Server><Host>

<ServiceAccess Default="Allow">
 <Deny>192.168.7.9-255</Deny>
 <Deny>192.168.8.10/255.255.255.0</Deny>
</ServiceAccess>

	<ServiceAccess>
Configures ACL using the IP address. Supports the four formats of IP, IP Range, Bitmask, and Subnet. The order is important, with the highest configuration taking priority.
Default (default: Allow)
Configures how to process requests that do not meet any of the conditions. If set to Deny, IP addresses to be allowed should be specified in <Allow> tags.

Denied IP addresses are logged in the Deny Log.

GeoIP

GeoIP can be used to deny access based on geographical location. Binary databases in GeoIP databases [http://dev.maxmind.com/geoip/legacy/downloadable/] are linked to GEOIP_MEMORY_CACHE and GEOIP_CHECK_CACHE [http://dev.maxmind.com/geoip/legacy/benchmarks/] to apply changes in real time.

server.xml - <Server><Host>

<ServiceAccess GeoIP="/var/ston/geoip/">
 <Deny>AP</Deny>
 <Deny>GIN</Deny>
</ServiceAccess>

The directory for GeoIP databases is configured in the GeoIP property of <ServiceAccess>. The supported country codes are <http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2>`_ and
ISO 3166-1 alpha-3 [http://en.wikipedia.org/wiki/ISO_3166-1_alpha-3].

Note

Because GeoIP has a reserved file name, you must use the local path it is stored in. Also, because service changes go into effect automatically, there is no need to reload the configuration deliberately.

If GeoIP is configured, the following will check for the files in the given directory. If it is not configured, a 404 NOT FOUND response is returned.

http://127.0.0.1:10040/monitoring/geoiplist

The results are returned in JSON format.

{
 "version": "2.0.0",
 "method": "geoiplist",
 "status": "OK",
 "result":
 {
 "path" : "/usr/ston/geoip/",
 "files" :
 [
 {
 "file" : "GeoIP.dat",
 "size" : 766255
 },
 {
 "file" : "GeoLiteCity.dat",
 "size" : 12826936
 }
]
 }
}

Virtual Host Access Control

Controls access for each virtual host. The virtual host decides whether to deny access when the client sends an HTTP request. This is because the virtual host cannot be found without an HTTP request.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<AccessControl Default="Allow" DenialCode="401">OFF</AccessControl>

	<AccessControl>
	OFF (default) The ACL is not activated. All client requests are allowed.

	ON The ACL is activated. Denied requests are responded to with the code set in the DenialCode property. If the Default (default: Allow) property is set to Allow, the ACL is used as a blacklist. If it is set to Deny, the ACL is used as a whitelist.

Denied requests are logged in the Access Log as TCP_DENY.

Virtual Host ACL

Determines whether client HTTP requests are allowed/denied/redirected. You can also configure different response codes for each condition. For redirected requests, the response will be 302 Moved Temporarily. The ACL is configured in the /svc/{virtual host name}/acl.txt file.

/svc/www.example.com/acl.txt
Commas (,) are delimiters, and the order is {condition},{keyword = allow|deny|redirect}.
If set to deny, the response code can be set after the keyword.
If not specified, the DenialCode of <AccessControl> is used.
If set to redirect, the URL to be redirected to can be set after the keyword (stated as a value of a Location header).
Multiple conditions can be combined (AND) with an & sign.

$IP[192.168.1.1], allow
$IP[192.168.2.1-255]
$IP[192.168.3.0/24], deny
$IP[192.168.4.0/255.255.255.0]
$IP[AP] & !HEADER[referer], allow
$IP[GIN], redirect, /page/illegal_access.html
$HEADER[cookie: *ILLEGAL*], deny, 404
$HEADER[via: Apache]
$HEADER[x-custom-header]
$HEADER[referer:], redirect, http://another-site.com
!HEADER[referer] & !HEADER[user-agent] & !HEADER[host], deny
$URL[/source/public.zip], allow
$URL[/source/*]
/profile.zip, deny, 500
/secure/*.dat

A condition can be formated as an IP, GeoIP, Header, or URL.

	
	IP

	Represented as $IP[...], in which an IP, IP Range, Bitmask, or Subnet can be input.

	
	GeoIP

	Represented as $IP[...] and can only be used if GeoIP is configured.

	
	Header

	Represented as $HEADER[Key : Value]. The Value can recognize specific or patterned expressions. If Value is an empty string but the colon is there ($HEADER[Key:]), then it refers to an empty header value. If the Key is specified without the colon ($HEADER[Key]), then the condition will refer to any request that has the corresponding header.

	
	URL

	Represented as $URL[...] and can be omitted. Specific and patterned expressions can be used.

$ means “if the condition is met, perform the action”, while ! means “if the condition is not met, perform the action”. The following negative conditions are supported.

If the country is not KOR, deny.
!IP[KOR], deny

If the referer header is missing, deny.
!HEADER[referer], deny

If not under the /secure/ path, allow.
!URL[/secure/*], allow

When redirecting, the URI that the client requests might be needed. This can be obtained with the #URI keyword.

If the referer header is missing, the URI is appended to example.com and redirected.
Client requests begin with /, so there's no need to add a / to the redirect URL.
!HEADER[referer], redirect, http://example.com#URI

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STON Edge Server 2.3.4 documentation

Chapter 15. Bandwidth

This chapter will explain various ways to set bandwidth limits for each virtual host. In the past, the objective was generally to prevent bandwidth from exceeding a fixed limit. However, the idea has changed into regulating bandwidth to be effective. It is now possible to analyze content in real time to optimize the use of bandwidth.

Virtual Host Bandwidth Limits

Limits the maximum bandwidth of a virtual host. This is a concrete method that has the highest priority.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<TrafficCap Session="0">0</TrafficCap>

	<TrafficCap> (default: 0 Mbps)
Configures the maximum bandwidth of a virtual host in Mbps. A value of 0 will not limit the bandwidth.
The``Session (default: 0 Kbps)`` property configures the maximum bandwidth that can be transferred in each client session.

For example, setting <TrafficCap> to 50 (Mbps) will have the same effect has installing 50 Mbps NIC. The total bandwidth of all clients that connect to the virtual host will be unable to exceed 50 Mbps.

Session behaves as follows.

	Even if Session is configured, the total client bandwidth cannot exceed <TrafficCap>.

	Even if Bandwidth Throttling is configured, the maximum speed of each client session cannot exceed the Session value.

Bandwidth Throttling

Bandwidth Throttling (BT) is a function that can dynamically regulate the client transfer bandwidth for each session. Media files are generally comprised of Video (V) and Audio (A) headers, as seen below.

[image: ../_images/conf_media_av.png]
BT is not concerned with headers.

The headers get bigger when the play-time is longer or the key frame cycle is shorter. Therefore, if the media file can be recognized, the headers are transferred without a bandwidth limit for smoother playback. As seen in the following image, it is after the headers are fully transferred that BT starts.

[image: ../_images/conf_bandwidththrottling2.png]
Operation scenario

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<BandwidthThrottling>
 <Settings>
 <Bandwidth Unit="kbps">1000</Bandwidth>
 <Ratio>100</Ratio>
 <Boost>5</Boost>
 </Settings>
 <Throttling>OFF</Throttling>
</BandwidthThrottling>

<BandwidthThrottling> Default operation is configured in the subtags.

	<Settings> Configures default operation.
	<Bandwidth> (default: 1000 Kbps)
Configures client transfer bandwidth. The Unit property is used to configure the default unit (kbps, ``mbps, bytes, kb, mb).

	<Ratio> (default: 100%)
Configures bandwidth by applying the ratio to the <Bandwidth> setting.

	<Boost> (default: 5 s)
Transfers data to clients with unlimited speed for the set amount of time. The amount of data can be calculated with the equation <Boost> x <Bandwidth> x <Ratio>.

	<Throttling>
	OFF (default) Does not apply BT.

	ON Applies BT if the conditions are met.

Bandwidth Throttling Condition List

Configures the BT condition list. Conditions must be met for BT to be applied. The list is checked in order to see if any conditions are met. This transfer policy is saved in the file /svc/{virtual host name}/throttling.txt.

/svc/www.example.com/throttling.txt
Commas (,) are delimiters, and the order is {condition},{bandwidth},{ratio},{boost}.
All fields except for {condition} can be omitted.
Omitted fields use the default values set in <Settings>.
All condition formats are identical to settings in acl.txt.
The unit for {bandwidth} is the same as the Unit property of <Bandwidth> under <Settings>.

Transfers data with unlimited speed for 3 seconds, and then limits to to 3 Mbps (3000 Kbps = 2000 Kbps x 150%).
$IP[192.168.1.1], 2000, 150, 3

Only defines bandwidth. Transfers data with unlimited speed for 5 seconds (default), and then limits to 800 Kbps.
!HEADER[referer], 800

Only defines boost. Transfers data with unlimited speed for 10 seconds, and then limits to 1000 Kbps.
HEADER[cookie], , , 10

Does not apply BT for files with the m4a extension.
$URL[*.m4a], no

By analyzing media files (MP4, M4A, MP3), bandwidth can be obtained from the encoding rate. The file extension must be one of .mp4, .m4a, or .mp3. In order to dynamically extract the bandwidth, you can add an x to the bandwidth value, as shown below.

Finds the bandwidth for /vod/*.mp4 files. If the bandwidth cannot be found, 1000 is used instead.
$URL[/vod/*.mp4], 1000x, 120, 5

Finds the bandwidth if the user-agent header is missing. If the bandwidth cannot be found, 500 is used instead.
!HEADER[user-agent], 500x

Finds the bandwidth for /low_quality/* files. If the bandwidth cannot be found, the default value is used instead.
$URL[/low_quality/*], x, 200

QueryString Priority Condition

Uses a predetermined QueryString to dynamically configure <Bandwidth>, <Ratio>, and <Boost>. This configuration takes priority over BT conditions.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<BandwidthThrottling>
 <Settings>
 <Bandwidth Param="mybandwidth" Unit="mbps">2</Bandwidth>
 <Ratio Param="myratio">100</Ratio>
 <Boost Param="myboost">3</Boost>
 </Settings>
 <Throttling QueryString="ON">ON</Throttling>
</BandwidthThrottling>

	Param in <Bandwidth>, <Ratio>, <Boost>

Configures the QueryString key with a different meaning for each tag.

	QueryString in <Throttling>

	OFF (default) Does not redefine conditions as QueryStrings.

	ON Redefines conditions as QueryStrings.

The above configuration allows BT to be dynamically configured based on the URLs requested by clients, as seen below.

Transfers data with unlimited speed for 10 seconds, and then limits to 1.3 Mbps (1 Mbps x 130%).
http://www.winesoft.co.kr/video/sample.wmv?myboost=10&mybandwidth=1&myratio=130

Not all parameters need to be specified.

http://www.winesoft.co.kr/video/sample.wmv?myratio=150

If some conditions are omitted as in the above example, the remaining fields (in this example, bandwidth and boost) are chosen using a condition list. If there is no condition that matches, then the default values in <Settings> are used. Even if a QueryString is specified, if the condition list is set to not apply (no), then BT will not be applied.

There is potential for confusion with QueryString Differentiation when using QueryStrings. If QueryString Differentiation is set to ON, the QueryStrings in URLs requested by clients will all be recognized except for BandwidthParam, BoostParam, and RatioParam.

GET /video.mp4?mybandwidth=2000&myratio=130&myboost=10
GET /video.mp4?tag=3277&myboost=10&date=20130726

For example, the above QueryStrings are only used to decide BT and are removed when creating a Caching-Key or sending a request to the origin server. Therefore, they will be recognized as the following.

GET /video.mp4
GET /video.mp4?tag=3277&date=20130726

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STON Edge Server 2.3.4 documentation

Chapter 16. Media

This chapter will explain how to intelligently handle media in the service. Due to there being various client environments and service diversity, there will be many cases where content must be processed in various ways. As such, identical content will exist on the origin server in different forms. This method will not just require more processing time and storage space, it is also hard to maintain.

Reordering MP4/M4A Header

Normally, the header of an MP4 file cannot be completed during the encoding process, and so is attached at the end of the file after encoding is done. An extra step is necessary to move the header to the front. If the header is at the end, Pseudo-Streaming will be unavailable for media players that do not support that format. However, reordering the header can easily allow for Pseudo-Streaming support.

The header reordering only occurs during the transfer stage and will not modify the original format. It will also not take up extra storage space.

server.xml - <Server><VHostDefault><Media>
vhosts.xml - <Vhosts><Vhost><Media>

<UpfrontMP4Header>OFF</UpfrontMP4Header>
<UpfrontM4AHeader>OFF</UpfrontM4AHeader>

	<UpfrontMP4Header>
	OFF (default) Nothing happens.

	ON If the extension is .mp4 and the header is at the end of the file, the header will be moved to the front of the file before transfer.

	<UpfrontM4AHeader>
	OFF (default) Nothing happens.

	ON If the extension is .m4a and the header is at the end of the file, the header will be moved to the front of the file before transfer.

If content with headers that need to be moved are being requested for the first time, the parts necessary for reordering will be downloaded first. This method is not only smart, but also occurs quickly. The client will receive the file as if the header had always been in the front, without having to see any of the complicated processes occurring backstage.

Note

If the file is broken or unable to be analyzed, it will be transferred as is.

Trimming

Extracts desired parts of a media file using time values. Trimming only occurs during the transfer stage and will not modify the original format. It will also not take up extra storage space.

server.xml - <Server><VHostDefault><Media>
vhosts.xml - <Vhosts><Vhost><Media>

<MP4Trimming StartParam="start" EndParam="end" AllTracks="off">OFF</MP4Trimming>
<M4ATrimming StartParam="start" EndParam="end" AllTracks="off">OFF</M4ATrimming>
<MP3Trimming StartParam="start" EndParam="end">OFF</MP3Trimming>

	<MP4Trimming> <MP3Trimming> <M4ATrimming>
	OFF (default) Nothing happens.

	ON If the extension matches (.mp4, .mp3, .m4a), the file will be trimmed to the desired section. The section to be trimmed can be configured with the StartParam and EndParam properties.

	AllTracks property
	OFF (default) Trims only audio/video tracks (Mod-H264 format).

	ON Trims all tracks. Media player compatibility must be checked before using this setting.

Parameters can input via client QueryStrings. For example, to trim a certain section of a 10-minute video clip, you would specify the desired times (unit: seconds) in QueryStrings.

http://vod.wineosoft.co.kr/video.mp4 // 10 minutes: trim entire video
http://vod.wineosoft.co.kr/video.mp4?end=60 // 1 minute: trim from start to 1 minute (60 seconds)
http://vod.wineosoft.co.kr/video.mp4?start=120 // 8 minutes: trim from 2 minutes (120 seconds) to end
http://vod.wineosoft.co.kr/video.mp4?start=3&end=13 // 10 minutes: trim from 3 seconds to 13 seconds

If the StartParam value is larger than the EndParam value, the section will be considered undefined. This function was developed to facilitate the Skip function for media players that support HTTP Pseudo-Streaming. As such, STON will recognize keyframes and times to extract the sections so the video can play properly, instead of trimming the file based on the offset, as when processing a Range request.

The file delivered to the client is in the form of a complete MP4 file with a recreated MP4 header, as shown below.

[image: ../_images/conf_media_mp4trimming.png]
The file is transferred in the form of a complete file.

The extracted section is recognized as a separate file, so a 200 OK response is returned. If the Range header is specified as shown below, the Range will be calculated from the extracted file and a 206 Partial Content response is returned.

[image: ../_images/conf_media_mp4trimming_range.png]
It is processed like a normal Range request.

Because trimming parameters use the QueryString format, there is a possibility for confusion with QueryString Differentiation. If <ApplyQueryString> is set to ON, the QueryStrings of URLs requested by clients will be recognized, but StartParam and EndParam will be removed.

GET /video.mp4?start=30&end=100
GET /video.mp4?tag=3277&start=30&end=100&date=20130726

In the above example, if start and end are entered for StartParam and EndParam, respectively, the values will only be used to extract a section and are removed when creating a Caching-Key or sending a request to the origin server. They will then be recognized as below.

GET /video.mp4
GET /video.mp4?tag=3277&date=20130726

Expansion modules and CDN solutions can also affect how QueryStrings are used.

[image: ../_images/conf_media_mp4trimming_range.png]
Module/CDN references provided by the JW Player

In addition, the ngx_http_mp4_module [http://nginx.org/en/docs/http/ngx_http_mp4_module.html] in nginx and the Mod-H264-Streaming-Testing-Version2 [http://h264.code-shop.com/trac/wiki/Mod-H264-Streaming-Testing-Version2] in lighttpd use start as a QueryString.

Multi-Trimming

Multiple sections of a video clip are stitched into a single one using time values as a basis.

[image: ../_images/conf_media_multitrimming.png]
/video.mp4?trimming=0-30,210-270,525-555

The function behaves in much the same way as Trimming except for how the sections are chosen.

server.xml - <Server><VHostDefault><Media>
vhosts.xml - <Vhosts><Vhost><Media>

<MP4Trimming MultiParam="trimming" MaxRatio="50">OFF</MP4Trimming>
<M4ATrimming MultiParam="trimming">OFF</M4ATrimming>

	<MP4Trimming> <M4ATrimming>
	MultiParam (default: "trimming")
The set name is used for the QueryString key to determine the sections to be extracted. Each section is represented by “start - end”, and separated by a comma (,).

	MaxRatio (default: 50%)
The video trimmed by Multi-Trimming can only be as large as the MaxRatio (max: 100%) of the original video. Segments that exceed the MaxRatio are ignored.

For example, the following call will create a 3-minute video.

http://example.com/video.mp4?trimming=10-70,560-620,1245-1305

Videos can also be made with the same clip repeating, or the front and back switched.

http://example.com/video.mp4?trimming=17-20,17-20,17-20,17-20
http://example.com/video.mp4?trimming=1000-1200,500-623,1900-2000
http://example.com/video.mp4?trimming=600-,400-600

If the time values are not input, it will refer to the start and end times of the original video.

Note

Multi-Trimming takes priority over Trimming. If the Multi-Trimming key is seen in the QueryString, the Trimming key will be ignored.

MP4 HLS

MP4 files can be provided in the service with HTTP Live Streaming (HLS). The origin server no longer needs to split files for the HLS service. Regardless of the location of the MP4 file header, the file can be converted in real time to .m3u8/.ts while downloading the file.

Note

MP4HLS is not a transcoding that converts elementary streams (video or audio). Therefore, smooth playback is only possible for MP4 files encoded for HLS. If a file is not encoded for HLS, the video may freeze or the audio may not play. The video/audio encoding format given by Apple at the time of writing (2014/2/20) is shown below.

What are the specifics of the video and audio formats supported?
Although the protocol specification does not limit the video and audio formats, the current Apple implementation supports the following formats:

[Video]
H.264 Baseline Level 3.0, Baseline Level 3.1, Main Level 3.1, and High Profile Level 4.1.

[Audio]
HE-AAC or AAC-LC up to 48 kHz, stereo audio
MP3 (MPEG-1 Audio Layer 3) 8 kHz to 48 kHz, stereo audio
AC-3 (for Apple TV, in pass-through mode only)

Note: iPad, iPhone 3G, and iPod touch (2nd generation and later) support H.264 Baseline 3.1. If your app runs on older versions of iPhone or iPod touch, however, you should use H.264 Baseline 3.0 for compatibility. If your content is intended solely for iPad, Apple TV, iPhone 4 and later, and Mac OS X computers, you should use Main Level 3.1.

For existing methods, the following origin files are necessary for Pseudo-Streaming and HLS. In this case, STON will copy the origin files as is and provide them to the clients. However, as the play time gets longer, more derivative files will be created, making it harder to manage.

[image: ../_images/conf_media_mp4hls1.png]
A laborious way to provide HLS

Meanwhile, <MP4HLS> can dynamically create the necessary files from the original for the HLS service.

[image: ../_images/conf_media_mp4hls2.png]
A smarter way to provide HLS

All .m3u8/.ts files will be derived from the original file and will not consume any extra storage space. The file will only temporarily be created in memory when in use, and automatically discarded when not in use.

server.xml - <Server><VHostDefault><Media>
vhosts.xml - <Vhosts><Vhost><Media>

<MP4HLS Status="Inactive" Keyword="mp4hls">
 <Index Ver="3" Alternates="off">index.m3u8</Index>
 <Sequence>0</Sequence>
 <Duration>10</Duration>
 <AlternatesName>playlist.m3u8</AlternatesName>
</MP4HLS>

	<MP4HLS>

	Status (default: Inactive) Active only when set to Active.

	Keyword (default: mp4hls) HLS service keyword.

	<Index> (default: index.m3u8) HLS index file name (.m3u8).

	Ver (default: 3) Index file version.
If the version is 3, the header will be specified as #EXT-X-VERSION:3 and the time value of #EXTINF will be given to the third decimal. If the version is 1, there is no #EXT-X-VERSION header, and the time value of #EXTINF is rounded up to a whole number.

	Alternates (default: OFF) Turns Stream Alternates on or off.

[image: admin/img/hls_alternates_off.png]
OFF. The TS list is provided by <Index>.

[image: admin/img/hls_alternates_on.png]
ON. The TS list is provided by <AlternatesName>.

	<Sequence> (default: 0) The starting number for .ts files. The number will start with the given value and increment by 1 with every file.

	<Duration> (default: 10 s)
Splits the MP4 file for HLS with the given time (in seconds). The basis for splitting are the keyframes in video/audio. Because the keyframes can be uneven, equal splitting is not always possible. If you attempt to split using 10 seconds but either 9 or 12 seconds is possible due to the keyframes, the closer value (9 seconds) will be chosen.

	<AlternatesName> (default: playlist.m3u8) Stream Alternates file name.

http://www.example.com/video.mp4/mp4hls/playlist.m3u8

For example, if the service address is as follows, Pseudo-Streaming can be performed with this address.

http://www.example.com/video.mp4

The virtual host will use the configured Keyword in <MP4HLS> to perform the HLS service. If the following URL is called, an index.m3u8 file will be created from /video.mp4.

http://www.example.com/video.mp4/mp4hls/index.m3u8

If the Alternates property is set to ON, the <Index> file will provide the <AlternatesName> file in the service.

#EXTM3U
#EXT-X-VERSION:3
#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=200000,RESOLUTION=720x480
/video.mp4/mp4hls/playlist.m3u8

The Bandwidth and Resolution in #EXT-X-STREAM-INF are provided dynamically by analyzing the video.

Note

Though Stream Alternates is provided, index.m3u8 in the current version will always provide only one sub-index file (playlist.m3u8). This is because the cache can’t tell that video_1080.mp4 and video_720.mp4 are the same video (with only the encoding being different).

The final .ts list (version 3) that is created is as follows.

#EXTM3U
#EXT-X-TARGETDURATION:10
#EXT-X-VERSION:3
#EXT-X-MEDIA-SEQUENCE:0
#EXTINF:11.637,
/video.mp4/mp4hls/0.ts
#EXTINF:10.092,
/video.mp4/mp4hls/1.ts
#EXTINF:10.112,
/video.mp4/mp4hls/2.ts

... (omitted)...

#EXTINF:10.847,
/video.mp4/mp4hls/161.ts
#EXTINF:9.078,
/video.mp4/mp4hls/162.ts
#EXT-X-ENDLIST

There are three policies for splitting.

	If the keyframe interval is smaller than <Duration> If the keyframe is 3 seconds and <Duration> is 20 seconds, the largest multiple of the 3 (the keyframe) that does not exceed 20 (the duration) will be used to split the video (in this case, 18).

	If the keyframe interval is close to <Duration> If the keyframe is 9 seconds and <Duration> is 10 seconds, the largest multiple of the 9 (the keyframe) that does not exceed 10 (the duration) will be used to split the video (in this case, 9).

	If the keyframe interval is larger than <Duration> The keyframe interval is used to split the video.

Let’s understand how STON will behave according to the following client request.

GET /video.mp4/mp4hls/99.ts HTTP/1.1
Range: bytes=0-512000
Host: www.winesoft.com

	STON Initial loading. (Nothing has been cached yet.)

	Client HTTP Range request. (Requests the first 500 KB of the 100th file.)

	STON Creates a caching object of the /video.mp4 file.

	STON Downloads from the origin server the portion necessary to analyze the /video.mp4 file.

	STON Downloads from the origin server the portion necessary to provide the 100th file (99.ts).

	STON Creates the 100th file (99.ts) and proceeds with the Range service.

	STON Discards the 99.ts file after completing the service.

Note

If MP4Trimming is set to ON, MP4 files that have been trimmed can also be converted to HLS. (HLS video files cannot be trimmed. Note that HLS is not MP4 but MPEG2TS.) The most natural way of converting a trimmed video to HLS is the following.

/video.mp4?start=0&end=60/mp4hls/index.m3u8

Though this will not cause any problems, it is HTTP policy to put the QueryString at the end. To adhere to this policy, the following forms will produce the same effect.

/video.mp4/mp4hls/index.m3u8?start=0&end=60
/video.mp4?start=0/mp4hls/index.m3u8?end=60

MP3 HLS

MP3 files can also be provided in the service with HLS.

server.xml - <Server><VHostDefault><Media>
vhosts.xml - <Vhosts><Vhost><Media>

<MP3HLS Status="Inactive" Keyword="mp3hls">
 <Index Ver="3" Alternates="off">index.m3u8</Index>
 <Sequence>0</Sequence>
 <Duration>10</Duration>
 <AlternatesName>playlist.m3u8</AlternatesName>
</MP3HLS>

All settings and behaviors are identical to MP4 HLS.

Note

If MP4 HLS and MP3 HLS are configured to use the same Keyword, then MP3 HLS will not operate.

DIMS

The Dynamic Image Management System (DIMS) is a function that can process images into various other forms. DIMS is an expansion based on mod_dims [https://code.google.com/p/moddims/wiki/WebserviceApi]. A total of seven forms (optimize, crop, thumbnail, resize, reformat, quality, composite) are available and can also be combined.

[image: ../_images/dims.png]
Various ways of image processing

The image is generated dynamically and can be called by placing the keyword and the processing option at the end of the URL. The processed image will be cached and will not be reprocessed as long as the original image is not changed.

For example, if the original file is /img.jpg, the following formats can be used to process the image. (“12AB” is the configured keyword.)

http://image.example.com/img.jpg // Original image
http://image.example.com/img.jpg/12AB/optimize
http://image.example.com/img.jpg/12AB/resize/500x500/
http://image.example.com/img.jpg/12AB/crop/400x400/
http://image.example.com/img.jpg/12AB/composite/watermark1/

If <Dims> is not specifically configured, none of the following will be activated.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<Dims Status="Active" Keyword="dims" MaxSourceSize="10" OnFailure="message" />

	<Dims>
	Status DIMS activation (Active or Inactive).

	Keyword The keyword to differentiate between the original and DIMS.

	MaxSourceSize (default: 10 MB) Maximum original image size (in MB).

	OnFailure Behavior when image conversion fails.
	message (default) Responds with a 500 Internal Error. A more specific error message will be included.
	The original file was not successfully downloaded.

	The original file size is too large.

	The original file loading failed.

	Image converting failed or invalid DIMS command.

	redirect Performs a 302 Redirect to the original image URL.

Optimization

Optimization reduces the size of the image file while maintaining its quality. Only JPEG, JPEG-2000, and Lossless-JPEG file formats are supported. Images that have already been optimized by another tool will most likely be unable to be optimized further.

http://image.example.com/img.jpg/dims/optimize

Optimization does not require any extra options besides the keyword. As such, it is suggested to place it at the very end when combining with other options.

http://image.example.com/img.jpg/dims/resize/100x100/optimize

All the other DIMS functions use a lot of system resources, but optimization is the most resource-intensive process. The following is the result of a performance test with various images with a HitRatio of 0%.

	OS CentOS 6.2 (Linux version 2.6.32-220.el6.x86_64 (mockbuild@c6b18n3.bsys.dev.centos.org) (gcc version 4.4.6 20110731 (Red Hat 4.4.6-3) (GCC)) #1 SMP Tue Dec 6 19:48:22 GMT 2011)

	CPU Intel(R) Xeon(R) CPU E3-1230 v3 @ 3.30GHz (8 processors) [http://www.cpubenchmark.net/cpu.php?cpu=Intel+Xeon+E3-1230+v3+%40+3.30GHz]

	RAM 16GB

	HDD SMC2108 SAS 275GB X 3EA

	Size
	Conversion
	Response time (ms)
	Client traffic (Mbps)
	Origin traffic (Mbps)
	Traffic reduction (%)

	16KB
	720
	19.32
	46.32
	92.62
	49.99

	32KB
	680
	20.68
	86.42
	165.08
	47.65

	64KB
	285
	50.16
	80.67
	150.96
	46.56

	128KB
	274
	57.80
	164.35
	276.52
	40.56

	256KB
	210
	80.74
	99.42
	432.35
	77.00

	512KB
	113
	156.18
	160.54
	436.04
	63.18

	1MB
	20
	981.07
	90.62
	179.88
	49.62

With about a 50% reduction in traffic, the function is very effective. As stated before, optimization is a very resource-intensive process. As can be seen in the above table, the size of the file is the most important variable.

Because of this, applying optimization without careful consideration can cause huge problems. A situation with a good Request hit ratio is recommended; otherwise, you must make sure that there are enough CPU resources in accordance with the scale of the service.

Crop

With the upper left corner as the origin, the image is cropped to the desired dimensions. The dimensions are formatted as widthxheight{+-}x{+-}y{%}. The following is an example of cropping a section of width=100, height=200 starting from x=20, y=30.

http://image.example.com/img.jpg/dims/crop/100x200+20+30/

Generating Thumbnails

This function generates thumbnails. The size and options are formatted as widthxheight{%} {@} {!} {<} {>}. In general, the width and height of the original image are used as the maximum values for the function. Whether the image is being enlarged or shrunk, the aspect ratio will always be preserved. To resize an image to a specific size, an exclamation point (!) can be added to the end of the size. For example, 640X480! means that a thumbnail of exactly size 640x480 will be generated. If either the width or the height is omitted, the omitted value will be automatically calculated based on the aspect ratio.

For example, /thumbnail/100/ will determine the height of the thumbnail using the width, while /thumbnail/x200/ will determine the width using the height. The thumbnail size can also be expressed as a percentage (%) of the original image. To enlarge the image, a value larger than 100 (e.g. 125%) is used, while a value lower than 100 will shrink the image. It is important to keep in mind that the % character is encoded as %25 in the URL Encoding policy.

For example, 50% is encoded as 50%25. The following example generates a thumbnail with width=78, height=110.

http://image.example.com/img.jpg/dims/thumbnail/78x110/

Resizing

This function changes the size of the image. The new size is formatted as width x height. Even if the image is changed, the aspect ratio will be preserved. The following example resizes the original image to a size of width=200, height=200.

http://image.example.com/img.jpg/dims/resize/200x200/

Converting Format

This function converts the format of the image. The supported formats are “png”, “jpg”, and “gif”. The following example converts from a JPG to a PNG.

http://image.example.com/img.jpg/dims/format/png/

Adjusting Image Quality

This function adjusts the image quality. This function is effective because it can reduce the volume of the transferring image. The allowed range is from 0 to 100. The following example adjusts the quality of an image to 25%.

http://image.example.com/img.jpg/dims/quality/25/

Image Composition

This function composites two or more images. Unlike the previous functions, the settings for this function must be configured in advanced. This function is helpful when placing a watermark on an image.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<Dims Status="Active" Keyword="dims" port="8500">
 <Composite Name="water1" File="/img/small.jpg" />
 <Composite Name="water2" File="/img/medium.jpg" Gravity="se" Geometry="+0+0" Dissolve="50" />
 <Composite Name="water_ratio" File="/img/wmark_s.png" Gravity="s" Geometry="+0+15%" Dissolve="100" />
</Dims>

	<Composite>

Configures the settings for image composition. The function is configured by its properties, and will take no extra values.

	Name Designates the name of the image to be called. The “/” character cannot be used. This option will be located after “/composite/” in the URL.

	File Designates the path of the image to be composited.

	Gravity (default: c) Starting from the upper left, there are nine points (nw, n, ne, w, c, e, sw, s, se) where composition can be applied.

[image: ../_images/conf_dims2.png]
Gravity reference points

	
	Geometry (default: +0+0)

	Uses Gravity as the origin to determine the location where composition is applied. The format is {+-}x{+-}y. The red circles are the points specified by the Gravity property and +0+0, and can be moved towards the center of the image as the values of +x+y increase. The green arrow indicates +x, and the purple arrow indicates +y. If -x-y is used, it will refer to a point outside of the image dimensions, and the composited image will not show up. This property may seem rather convoluted, but because it can automatically calculate the size of images, it is effective in creating consistent results. Furthermore, the % option can be used as in +x%+y% to use ratios as values.

	Dissolve (default: 50) Opacity of the image to be composited (0~100).

If <Composite> is configured, the Name property can be called to composite the images.

http://image.example.com/img.jpg/dims/composite/water1/

Original Image Conditions

Options will be dynamically applied in different ways based on the conditions of the original image. For example, if you want to lower the quality to 50% for images that are smaller than 1024x768 and resize images to 1024x768 for images that are larger, you can configure <ByOriginal> as follows.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<Dims Status="Active" Keyword="dims" port="8500">
 <ByOriginal Name="size1">
 <Condition Width="1024" Height="768">/quality/50/</Condition>
 <Condition>/resize/1024x768/</Condition>
 </ByOriginal>
</Dims>

	<ByOriginal>
Called with the Name property. Various conditions can be configured below with <Condition>.

	<Condition>
Changes will be applied to images that satisfy the conditions.

	Width If the width is smaller than the set value, the change is applied.

	Height If the height is smaller than the set value, the change is applied.

If no conditions are set, changes will be applied regardless of the image size.

<Condition> tags are applied in the order they are configured. Therefore, the condition for smaller images should be set first. This can be called with the following.

http://image.example.com/img.jpg/dims/byoriginal/size1/

For another example, different <Composite> conditions can be made for different image sizes. In this case, the following example uses the different Name``s of ``<Composite>.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<Dims Status="Active" Keyword="dims" port="8500">
 <Composite Name="water1" File="/img/small.jpg" />
 <Composite Name="water2" File="/img/medium.jpg" Gravity="se" Geometry="+0+0" Dissolve="50" />
 <Composite Name="water3" File="/img/big.jpg" Gravity="se" Geometry="+10+10" Dissolve="50" />
 <ByOriginal Name="size_water">
 <Condition Width="400">/composite/water1/</Condition>
 <Condition Width="800">/composite/water2/</Condition>
 <Condition>/composite/water3/</Condition>
 </ByOriginal>
</Dims>

When called with the following, a different composite will be made depending on the image size.

http://image.example.com/img.jpg/dims/byoriginal/size_water/

Animated GIF

All DIMS conversions apply identically to animated GIFs. The order of processing is as follows.

	The frames of the GIF are loaded as multiple images.

	Each image is converted.

	The converted frames are put back together in a single GIF.

The more frames there are, the more processing there needs to be done, which can lower service quality. In this case, you can configure the process to convert only the first frame, lowering the cost of processing.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<Dims FirstFrameOnly="OFF" />

	FirstFrameOnly (default: OFF) When set to ON, only the first frame of the animated GIF is converted.

If the following URL is called, the FirstFrameOnly can be specifically designated as well.

http://image.example.com/img.jpg/dims/firstframeonly/on/resize/200x200/
http://image.example.com/img.jpg/dims/firstframeonly/off/resize/200x200/

If called with the URL above, it will take precedence over the configuration.

Other

The above default functions can be combined to process images in more complex ways. For example, you can generate a thumbnail (78x110), convert the format from JPG to PNG, and change the quality to 50% all in one step.

http://image.example.com/img.jpg/dims/thumbnail/78x110/format/png/quality/50/

DIMS can process images using URL calls. As such, it is important to take note of other options that can affect URLs and cause unwanted results.

	If QueryString Differentiation is set to OFF, QueryStrings found after keywords are ignored.

 http://image.example.com/img.jpg?session=5234&type=37/dims/resize/200x200/

If it is set to ``ON``, it will be understood as is, but if it is set to ``OFF``, the URL will be understood as the following. ::

 http://image.example.com/img.jpg/dims/resize/200x200/

	If Case Sensitivity is set to OFF, all URLs will be converted to lowercase and then processed. Therefore, if DIMS keywords contain uppercase letters, they will not be recognized when called. It is recommended to always use only lowercase letters for keywords.

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STON Edge Server 2.3.4 documentation

Chapter 17. File System

This chapter will explain how to utilize STON as if it were a local disk. STON is based on FUSE [http://fuse.sourceforge.net/] and is mounted on the Linux VFS (Virtual File System). All files in the mounted directory will be cached the moment they are accessed, but other processes will not notice. You can consider this system as a ReadOnly disk with a Caching function.

[image: ../_images/conf_fs1.png]
Fuse structure.

If the Linux Kernel delivers structural File I/O function calls directly to STON, no other elements (e.g. physical File I/O, socket transmission) can interfere with the process. This architecture makes extremely high performance possible. Using STON’s memory caching, you can expect performance that’s better than physical disk access.

Mount

Mount is configured in global settings (server.xml).

server.xml - <Server><Cache>

<FileSystem Mount="/cachefs" DotDir="OFF" Separator="^">OFF</FileSystem>

	<FileSystem>
	OFF (default) Does nothing.

	ON STON will be mounted onto the path given by the Mount property.

This was developed in such a way that the existing HTTP structure is preserved, but a file system that can access the cache module is added. As such, regardless of where the access comes from, caching occurs only once and is given service by either HTTP or File I/O. The file system is a new bridge added that allows access to the cache module.

[image: ../_images/conf_fs2.png]
HTTP and File I/O share a cache module.

The content on the origin server can be accessed not only by HTTP but also by File I/O. Using this, you can increase the availability of solutions that are based on local files.

[image: ../_images/conf_fs3.png]
Any server is OK.

The current list of functions that support the STON File System is as follows.

	FUSE
	C
	LINUX

	open
	fopen
	open

	release
	fclose
	close

	read
	fseek, fread
	seek, read

	getattr
	fstat
	stat

	unlink
	remove
	unlink

File I/O goes through several internal steps. It is important to understand what goes on at each step to obtain the best performance.

Searching for Virtual Hosts

The first step is searching for the virtual host to be accessed. In an HTTP header, the Host header is specified as below, making it easy to find the virtual host.

GET /ston.jpg HTTP/1.1
host: example.com

This can be done in the file system using its first directory. For example, if STON is mounted on the /cachefs directory, local files can be accessed with the following path.

/cachefs/example.com/ston.jpg

Discovering a Virtual Host will work in the same way. If the <Alias> of example.com is set to *.example.com, then the following paths will access the same file.

/cachefs/example.com/ston.jpg
/cachefs/img.example.com/ston.jpg
/cachefs/example.example.com/ston.jpg

For example, in order to link example.com to the Apache server, you must set the DocumentRoot to /cachefs/example.com/.

File/Directory

The file system can be configured for each virtual host. Alternatively, a default virtual host can be configured to give all virtual hosts the same settings.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<FileSystem Status="Active" DotDir="OFF">
 <FileTime>origin</FileTime>
 <FileStatus>200</FileStatus>
 <DirStatus>301, 302, 400, 401, 403</DirStatus>
 <Unlink>Purge</Unlink>
</FileSystem>

	<FileTime> (default: Origin)
Returns the Last-Modified time from the origin server when set to Origin, or the local cached time when set to Local. If the origin server does not return a Last-Modified time when set to Origin, then the file time will be returned as the Unix epoch as seen below.

[image: admin/img/fs_filetime.png]

	<FileSystem>
The file system cannot be accessed if Status is Inactive. It must be set to Active.

	<FileStatus> (default: 200)
Configures the origin server HTTP response code that will be recognized as a file. Generally, 200 is used, but there are no specific restrictions.

	
	<DirStatus> (default: 301, 302, 400, 401, 403)

	Configures the origin server HTTP response code that will be recognized as a directory. The default values are usually 301, 302, 400, 401, or 403.

	<Unlink> (default: Purge)
Configures the behavior to be used for a file deletion request, choosing from Purge, Expire, or HardPurge.

Each origin server can interpret HTTP response codes in different ways. As such, it is important to configure how each HTTP response code should be interpreted.

In most cases, if a file exists on the origin server the response will be 200 OK. If a directory is accessed, the response will be 403 Forbidden or a redirect to another page with 302 Found. Multiple response codes can be set with commas (,) to identify the Body of corresponding HTTP response codes as files or directories. Response codes that are not configured will be considered non-existing, and File I/O will fail.

File Properties

In general, the first step of File I/O is to obtain the properties of the file. It is obvious to obtain the file information before opening the file. The process of the Kernel providing the file properties as seen by STON is portrayed in the figure below. (/cachefs is the mounted directory and is omitted by the Kernel.)

[image: ../_images/conf_fs4.png]
The process of obtaining the file properties.

In Linux, files are not distinguished from directories, so obtaining the file properties can be more complicated than it seems. As can be seen from the above figure, as the number of subfolders increases, more unnecessary virtual host searches and file accesses will occur, lowering performance. In particular, requests for inaccessible directories like /one or /one/two will be made, causing load on the origin server. Of course, if the file is cached, the origin server will not be accessed during the TTL, but it is clear that this is not an elegant solution.

A heuristic solution for this structural load is to add a DotDir property. DotDir is a function that will recognize paths without a dot (.) as a directory. The above figure is the result of DotDir having been set to OFF. If DotDir is set to ON, the following will occur.

[image: ../_images/conf_fs5.png]
Enabling (ON) the global DotDir.

There is no change in the process or number of Kernel calls. However, if the requested paths do not contain a dot (.), it will not go all the way to the virtual host and instead return immediately as a directory, allowing the virtual host and files to be accessed only when necessary. This function is based on the observation that most programmers do not assign extensions to directories. It is important that you check how directories are set up before using this function.

DotDir is a global property of <FileSystem>. In other words, if none of the virtual hosts use dots (.) for directories, it will be very effective to set DotDir to ON. Of course, even if DotDir is set to OFF, you can still configure it on each virtual host separately. Doing so can lower performance slightly, as shown below.

[image: ../_images/conf_fs6.png]
Enabling (ON) the virtual host DotDir.

Virtual host searches will still occur, but files will only be accessed if there is a dot (.). As the system’s performance is affected by how many times it is called, it is highly recommended to understand this function thoroughly.

Reading Files

Though the process to obtain file properties is complicated, reading files is much simpler. First, the file is opened. All files will of course be read-only, so accessing a file with write permissions will fail. When a file is accessed for the first time, the file will be cached from the origin server just like the HTTP service. While downloading the requested file, the File I/O service is run concurrently so that the process is not delayed.

[image: ../_images/conf_fs7.png]
Opening a file.

Once a file is opened, the behavior will be identical to the HTTP service. HTTP is more advantaged in file transfer because sequential file access occurs from an initially determined range. On the other hand, File I/O can generate a large number of read accesses on the scale of 1 KB regardless of file size. STON has implemented Readahead [http://en.wikipedia.org/wiki/Readahead] in the cache module in order to maximize performance, especially File I/O performance.

If the function to close a file (e.g. fclose) is called or a process is terminated, the file handle is turned in by the Kernel, which is the same as an HTTP transaction being closed.

Deleting Files

Cached files are managed by STON, but the process can send a request to delete a file. STON offers several Purge methods to respond to these requests.

For example, if <Unlink> is set to expire, the corresponding file will be expired upon a file deletion request. If the Kernel tries to access the file again, the file must be checked for modification on the origin server because the file is expired. If the file was not modified, it can then be provided again.

File Expansion

HTTP can dynamically process a file using an URL as seen below.

Trims a 0-60 second section of /video.mp4 via HTTP.
http://www.example.com/video.mp4?start=0&end=60

This QueryString format can be used in the same way for both HTTP and the file system.

Accesses the local file made from trimming a 0-60 second section of /video.mp4.
/cachefs/www.example.com/video.mp4?start=0&end=60

However, putting the processing options at the end of a URL as seen in MP4HLS and DLS can cause problems in File I/O.

/cachefs/image.winesoft.com/img.jpg/12AB/resize/500x500/
/cachefs/www.winesoft.com/video.mp4/mp4hls/index.m3u8

As explained in “File Properties”, Linux asks for the properties of each directory in a path. STON is unable to tell whether additional directories are added to the end of a path, so unprocessed files will end up in the service.

To resolve this issue, STON uses the Separator (default: ^) property to differentiate.

/cachefs/image.winesoft.com/img.jpg^12AB^resize^500x500^
/cachefs/www.winesoft.com/video.mp4^mp4hls^index.m3u8

[image: ../_images/conf_fs9.png]
MP4HLS access.

Within STON, the Separator s are switched to slashes (/) in order to use the HTTP call standard. Using this can eliminate unnecessary File I/O access, as shown below.

[image: ../_images/conf_fs7.png]
Extremely optimized access.

Wowza Integration

Wowza can be integrated using the file system. All you need to do is configure the path that STON is mounted on as the file path for Wowza.

	
	[STON - Global settings] Turn on the file system configuration

	Set <FileSystem> to ON in the global settings (server.xml). (In this example, the mount path will be set to “/cachefs”.)

server.xml - <Server><Cache>

<FileSystem Mount="/cachefs" DotDir="OFF" Separator="^">ON</FileSystem>

Alternatively, in WM, go to Global Settings -> File System and set the file system to “On”.

[image: ../_images/faq_wowza1.png]
STON must be restarted after configuration for mounting to be successful.

	
	[STON - Virtual host] Configure file system access permissions and response codes

	File system access for virtual hosts should be set to Active. The recognition of files/directories based on origin server response codes should also be set. The following uses the virtual host default settings (server.xml) as an example, but this can also be configured individually for each virtual host (vhosts.xml).

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<FileSystem Status="Active" DotDir="OFF">
 <FileStatus>200</FileStatus>
 <DirStatus>301, 302, 400, 401, 403</DirStatus>
</FileSystem>

Alternatively, in WM, go to Virtual Host -> Configuration (File System) and set the virtual host to “accessible”.

[image: ../_images/faq_wowza2.png]
Response codes can be configured here.

	
	[Wowza] Storage path configuration

	In the Wowza installed path, the /Conf/Application.xml file should be edited to refer to the path that STON is mounted on, as shown below.

<Streams>
 <StreamType>default</StreamType>
 <StorageDir>/cachefs/example.com</StorageDir>
 <KeyDir>${com.wowza.wms.context.VHostConfigHome}/keys</KeyDir>
</Streams>

	
	[Wowza] VOD path configuration

	In the Wowza installed path, the /Conf/vod/Application.xml file should be edited to refer to the path that STON is mounted on, as shown below.

<Streams>
 <StreamType>default</StreamType>
 <StorageDir>/cachefs/example.com</StorageDir>
 <KeyDir>${com.wowza.wms.context.VHostConfigHome}/keys</KeyDir>
</Streams>

	
	Player test

	Using the Wowza test player, videos not saved in local storage (that STON must cache) can be played with RTMP.

[image: ../_images/faq_wowza3.png]
The test needs a good video clip to play.

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STON Edge Server 2.3.4 documentation

Chapter 18. Optimization and More

This chapter will discuss optimization and other miscellaneous advanced topics. Optimization is a method used to obtain high performance, which is biggest merit that we are pursuing. In an enterprise environment, if hardware is high-performance, it can also mean that it uses as much resources as possible.

Among those resources is memory, the resource that is most important to all plans and policies. Memory indexing (finding requested URLs quickly) is especially important to understand, because indexing is what determines the quality of the service. The following table, displaying the default values based on the physical memory size, will be referred back to by the rest of the section.

	Physical RAM
	System Free
	Contents
	Caching Count
	Sockets

	1GB
	409.60MB
	188.37MB
	219,469
	5,000

	2GB
	819.20MB
	446.74MB
	520,494
	10,000

	4GB
	1.60GB
	963.49MB
	1,122,544
	20,000

	8GB
	3.20GB
	2.05GB
	2,440,422
	20,000

	16GB
	6.40GB
	4.45GB
	5,303,733
	20,000

	32GB
	12.80GB
	9.25GB
	11,030,356
	20,000

	64GB
	25.60GB
	18.85GB
	22,483,603
	20,000

	128GB
	51.20GB
	38.05GB
	45,390,095
	20,000

Indexing

In order to explain indexing, you must first understand the idea of “hot” and “cold” content.

[image: ../_images/indexing_hot_cold.png]

Content cached from the origin server is saved on the local disk. If that content must be read from the disk whenever it is accessed, performance will definitely decrease. As such, we can obtain higher performance by loading frequently requested content into memory. We will refer to content loaded into memory as hot content, and content located only on the disk as cold content.

Indexing refers to the process of locating hot and cold content and directly affects performance. The default is memory indexing.

server.xml - <Server><Cache>

<Indexing>Memory</Indexing>

Memory indexing does not keep a record of cold content. Information about all files is loaded into memory, so if a file cannot be found, it will be downloaded from the origin server. Because the search time is very short, we can obtain an increase in performance and service quality. However, this is limited by the memory storage size as well as the caching count, which is listed in the above table.

In disk indexing, if the requested file is not in hot content, it will look in cold content before going to the origin server.

server.xml - <Server><Cache>

<Indexing>Disk</Indexing>

This method is not limited by memory and therefore is not limited by the caching count. It can guarantee speed if the content is hot, but it will be relatively slower if the content is slow, due to it having to use the disk. In other words, hot content is based on memory speed, and cold content is based on disk speed.

If using disk indexing, it is highly recommended that you also use a solid-state drive (SSD). Indexing is only performed on the disk that STON is installed on. Because STON is generally installed on the same disk as the OS, you can expect high performance just by using an SSD for the OS disk.

Note

SSD endurance is determined not by access frequency but by the amount that can be written. SSDs from Intel or Samsung can guarantee a write endurance of 600 TB. In other words, if 20 GB is written in a day, then the SSD can last for about 10 years. 99% of STON’s writing operations is logging. Therefore, it is recommended to log on disks other than SSDs (such as SAS or SATA) to ensure the disk’s endurance.

Warning

Indexing cannot be changed dynamically, and even if it is changed, it will not guarantee stability. Therefore, you must perform Caching Reset in order to safely proceed with the service.

Memory Structure

The cache server can have the same behaviors as a general web server, but their objectives are quite different. Even better service optimization is possible if you can thoroughly understand the structure and behaviors of STON. The purpose of optimization is as follows.

High throughput. Handling tens of thousands of sessions simultaneously without a drop in performance.

Fast responsiveness. Providing a service to clients without delay.

Reduction in origin server load. Preventing an overload on the origin server in advance.

The following figures represent the memory structure of STON with 8 GB and 16 GB memory.

[image: ../_images/perf_mem_8_16.png]

Memory is divided into memory used by STON and free memory not used by STON. Like files and sockets, the memory used by STON can change based on the scale of the service.

Note

The basis of system load is disk I/O. You will have to consider how much content should be cached in order to reduce disk I/O.

Memory Management

Memory Structure will automatically be calculated based on the size of physical memory.

server.xml - <Server><Cache>

<SystemMemoryRatio>100</SystemMemoryRatio>

	<SystemMemoryRatio> (default: 100) Configures the ratio of memory used by STON using physical memory as the basis.

For example, if memory is 8 GB and <SystemMemoryRatio> is set to 50, it will act as if there is 4 GB of physical memory. This can be useful if STON is run alongside other processes that take up space in memory.

It can be even more effective to adjust the ratio of content stored in memory based on the specifics of the service.

server.xml - <Server><Cache>

<ContentMemoryRatio>50</ContentMemoryRatio>

	<ContentMemoryRatio> (default: 50) Configures the ratio of memory used for content to the total memory used by STON.

For example, if the file count is small but the content size is huge (like a game portal), you can increase this value to reduce file I/O. Conversely, if you have a lot of very small files, decreasing this value will be more useful.

System Free Memory

If the operating system (OS) is slow, no program will be able to obtain good performance. STON will set aside a portion of memory for the OS. This is to maximize the performance of the OS and is called system free memory.

	Physical RAM
	System Free

	1GB
	409.6MB

	2GB
	819.2MB

	4GB
	1.6GB

	8GB
	3.2GB

	16GB
	6.4GB

	32GB
	12.8GB

	64GB
	25.6GB

	128GB
	51.2GB

An experienced user will be able to adjust the free memory to what’s best for their service. Reducing free memory will mean loading more content into memory.

server.xml - <Server><Cache>

<SystemFreeMemoryRatio>40</SystemFreeMemoryRatio>

	<SystemFreeMemoryRatio> (default: 40, max: 40) Configures the ratio of memory set aside for free memory using physical memory as a basis.

Caching Service Memory

This is the memory that caches content that is delivered to clients. Content loaded into memory once will continue to exist in memory, as long as there is enough space. The problem is that there will often not be enough space.

[image: ../_images/perf_inmemory.png]

As seen in the above figure, the disk can be full of deliverable content, but the actual capacity of memory is limited. Even if you have 32 GB of physical memory, when you consider the size of game clients or HD video clips, it isn’t that much. No matter how efficiently you manage memory, it will only amount to the speed of the physical disk I/O.

The most effective method is to use as much available content memory space and reduce disk I/O. The following is a table of STON’s default settings for maximum content memory size based on physical memory.

	Physical RAM
	Contents
	Caching Count

	1GB
	188.37MB
	219,469

	2GB
	446.74MB
	520,494

	4GB
	963.49MB
	1,122,544

	8GB
	2.05GB
	2,440,422

	16GB
	4.45GB
	5,303,733

	32GB
	9.25GB
	11,030,356

	64GB
	18.85GB
	22,483,603

	128GB
	38.05GB
	45,390,095

Socket Memory

Sockets also use memory. If you have at least 4 GB of physical memory, then STON will by default generate at least twenty thousand sockets. With one socket equaling 10 KB, ten thousand sockets will use about 97.6 MB. About 195 MB of memory will be alloted to sockets by default.

	Physical RAM
	Socket Count
	Socket Memory

	1GB
	5,000
	97.6MB

	2GB
	10,000
	195MB

	4GB or more
	20,000
	390MB

If all the sockets are used as in the following figure, more sockets will automatically created.

[image: ../_images/perf_sockets.png]

If, like the above figure, more sockets are installed to bring the number up to thirty thousand, that will mean about 240 MB will be alloted to sockets. There doesn’t seem to be any problem with using only the number of sockets that we need. However, setting up more sockets than we need to use is just a waste of memory. For example, to guarantee 10 Mbps for each client from 10 Gbps NIC, the following equation gives us a maximum simultaneous user count of one thousand people.

10,000 Mbps / 10 Mbps = 1,000 Sessions

In this case, out of the twenty thousand sockets created by STON, only nineteen thousand are used, wasting about 148 MB. This 148 MB could be used for content, increasing efficiency. By setting the smallest possible number of sockets, we can gain use memory much more efficiently.

Minimum number of sockets. Refers to the number of initially alloted sockets.

Sockets that are installed later. Installs more sockets if all current sockets are established.

Another important factor is the Keep-Alive time setting for the client (see Session Management).

[image: ../_images/perf_keepalive.png]

Not all connected sockets will be in the middle of transferring data. In browsers like IE or Chrome, sockets are maintained in an accessed state to prepare for the next HTTP transfer that will occur. Among the connected sessions in online shopping, the percentage of sessions that aren’t transferring any data ranges from 50% to 80%.

[image: ../_images/perf_keepalive2.png]

If the Keep-Alive time is long, the reusability of the socket is better, but there will be more idle sockets and more memory waste. As such, it is important to configure a client Keep-Alive time that works best for the service.

TCP Segmentation Offload

Important

If you’re using 10 Gbps NIC, it is recommended that you configure TCP Segmentation Offload (TCP) to OFF.

In TCP, packets go under segmentation; TSO configures it so that this process is done not by the CPU but by NIC. (The default setting is ON.) However, we have experienced many errors related to this in a 10 Gbps NIC service environment.

	TCP packet loss and delay

	TCP connection timeout

	Unnatural increase in the load average

In conclusion, we can assume that TSO is unable to provide the high performance we expected from it. (These problems did not occur when changing NIC to 1 Gbps.) When TSO was set to OFF, the service returned to normal. This is not a point of concern about the usage of CPU but a good benchmark for the scale of the service.

The TSO setting can be configured/checked with the following. (The K is case-sensitive.)

ethtool -K ethX tso off // TSO OFF setting
ethtool -k ethX // Setting check
...
tcp segmentation offload: on
...

Tip

Please refer to the following links for more information.

	http://sandilands.info/sgordon/segmentation-offloading-with-wireshark-and-ethtool

	http://www.linuxfoundation.org/collaborate/workgroups/networking/tso

	http://www.packetinside.com/2013/02/mtu-1500.html

Client Request Limit

If you allow unlimited client requests, it can cause excessive load on the system. System overload is a very possible error. This can protect the system by preventing client requests over a certain number.

server.xml - <Server><Cache>

<MaxSockets Reopen="75">80000</MaxSockets>

	<MaxSockets> (default: 80000, max: 100000) The maximum number of client sockets that will be allowed. If the socket count falls below the Reopen (default: 75%) ratio in <MaxSockets>, access will be reallowed.

[image: ../_images/maxsockets.png]

Using the default settings, if the total client socket count exceeds 80,000, connections from new clients will immediately be closed. If the total client socket count falls to 60,000 (75% of 80,000), connections will be reallowed.

For example, there are thirty thousand client sessions and the origin servers have reached their limit, setting this value to thirty or forty thousand is recommended. Doing so, the available benefits are as follows.

	There is no need for a separate network setup (such as L4 session control).

	Prevents unnecessary client requests (that can’t be processed due to origin load).

	Raises service credibility. There will be no need for restarting or inspection during service bursts.

HTTP Client Session Count

Configures the initial/additional session count to process HTTP client connections.

server.xml - <Server><Cache>

<HttpClientSession>
 <Init>20000</Init>
 <TopUp>6000</TopUp>
</HttpClientSession>

	<Init> The number of sockets initially generated when STON is started.

	<TopUp> The number of additional sockets generated when the initial sockets are all in use.

When not specifically configured, the settings will be automatically configured based on the size of physical memory.

	Physical RAM
	<Init>, <TopUp>

	1GB
	5 thousand, 1 thousand

	2GB
	10 thousand, 2 thousand

	4GB
	20 thousand, 4 thousand

	8GB or more
	20 thousand, 6 thousand

If service is still possible with a smaller number of sockets in a limited environment, you can save on memory by lowering this socket count.

Request hit ratio

First, you must understand how client HTTP requests are processed. Caching processing results use the TCP_* format just like Squid, and each expression refers to how the cache server processed the request.

	TCP_HIT The requested resource (not expired) is cached and will respond immediately.

	TCP_IMS_HIT The resource requested with the If-Modified-Since (IMS) header is not expired and still cached, and will respond with 304 NOT MODIFIED. This will also apply when TTLExtensionBy4xx or TTLExtensionBy5xx is set to ON.

	TCP_REFRESH_HIT The requested resource is expired and will respond after checking the origin server (origin not modified, 304 N OT MODIFIED). The expiration time of the resource is extended.

	TCP_REF_FAIL_HIT The origin server check during the TCP_REFRESH_HIT result fails (connection failure, transfer delay) and will respond with expired content.

	TCP_NEGATIVE_HIT The requested resource is abnormal (origin server connection/transfer failure, 4xx response, 5xx response) and will respond with its currently cached form.

	TCP_REDIRECT_HIT Responds with a Redirect according to the service’s allow/deny/redirect conditions.

	TCP_MISS The requested resource is not cached (requested for the first time) and will respond with the result of accessing the origin server.

	TCP_REF_MISS The requested resource is expired and will respond after an origin server check (origin change, 200 OK). The new resource is cached.

	TCP_CLIENT_REFRESH_MISS The request is bypassed to the origin server.

	TCP_ERROR The requested resource is not cached (requested for the first time). Due to an origin server error (connection failure, transfer delay, origin exclusion) the resource was not cached. Responds with a 500 Internal Error to the client.

	TCP_DENIED The request is denied.

The request hit ratio can be calculated using the above results, and the formula is shown below.

TCP_HIT + TCP_IMS_HIT + TCP_REFRESH_HIT + TCP_REF_FAIL_HIT + TCP_NEGATIVE_HIT + TCP_REDIRECT_HIT
--
 SUM(TCP_*)

Byte hit ratio

The byte hit ratio is the ratio of the client outbound traffic to the origin inbound traffic. A negative number can arise if the origin inbound traffic is higher than client outbound traffic.

Client Outbound - Origin Inbound

 Client Outbound

Origin Server Failure Policy

One of the goals of the development team was to have the customer be able to examine the origin server at all times. If an error occurs on an origin server, the corresponding server will be excluded and go into restoration mode. Even if the server is reactivated, normal service operation must be confirmed before it can be put back into the service.

If all origin servers somehow end up in an error status, the service continues with only the content that was cached at the time. Expired content will have their TTLs extended until the origin server is restored. Even purged content can be restored if it cannot be cached from the origin server, in order to proceed with a smooth service. The goal is to not expose the error status of the servers to the clients as much as possible. If a request for new content is made with a complete error status, the following error page and reason will be displayed.

[image: ../_images/faq_stonerror.jpg]
You’d want to avoid showing this page as much as possible.

Time Units and Expressions

For values with a base unit of “seconds”, a string can instead be used for easier time expression. The following are the supported time expressions as well as their values converted to seconds.

	Expression
	Conversion

	year(s)
	31536000 sec (365 days)

	month(s)
	2592000 sec (30 days)

	week(s)
	604800 sec (7 days)

	day(s)
	86400 sec (24 hours)

	hour(s)
	3600 sec (60 min)

	minute(s), min(s)
	60 sec

	second(s), sec(s), (omitted)
	1 sec

The following expression, using combined units, can be used for time.

1year 3months 2weeks 4days 7hours 10mins 36secs

This can currently be used for the following values.

	Time expression of Custom TTL

	Everything but the Ratio of TTL

	ClientKeepAliveSec

	ConnectTimeout

	ReceiveTimeout

	BypassConnectTimeout

	BypassReceiveTimeout

	ReuseTimeout

	Cycle property of Recovery

	Bandwidth Throttling

Emergency Mode

Internally, all virtual hosts share MemoryBlocks to manage data. If new memory is necessary, old MemoryBlocks that aren’t being used can be reused as new memory. This process is called Memory-Swap. Using this structure can guarantee stability even for long periods of service.

[image: ../_images/faq_emergency1.png]
Content is loaded onto a MemoryBlock before being delivered.

Like in the right diagram of the above image, a situation may occur where all MemoryBlocks are in use with no reusable MemoryBlocks. In this case, Memory-Swap will be unavailable. For example, if all the clients are each downloading different parts of data at the same time, and the origin server is transferring different parts of data, then this worst-case scenario can occur. In this case, one solution is to have the system allot more memory to use. However, if the situation continues, memory usage can easily increase. An excessive use of memory can lead to a system memory swap or, at worst, the OS forcing STON to quit.

Note

Emergency mode refers to the mode where, when there is not enough memory, STON temporarily prevents new MemoryBlocks from being alloted.

STON will be put into emergency mode to prevent excessive memory usage, and the mode will be automatically lifted when enough reusable MemoryBlocks can be guaranteed.

server.xml - <Server><Cache>

<EmergencyMode>OFF</EmergencyMode>

	<EmergencyMode>
	OFF (default) Emergency mode is not used.

	ON Emergency mode is used.

In emergency mode, STON behaves as follows.

	Content that is already loaded will be provided normally.

	Bypasses will work normally.

	Content not loaded will return 503 service temporarily unavailable. TCP_ERROR statuses will increase.

	Idle client sockets will be quickly taken care of.

	New content will be unable to be cached.

	Expired content will not be renewed.

	The cache.vhost.status in SNMP and the Host.State value in XML/JSON statistics will return “Emergency”.

	The info log will record the activation/inactivation of emergency mode as below.

2013-08-07 21:10:42 [WARNING] Emergency mode activated. (Memory overused: +100.23MB)
...(omitted)...
2013-08-07 21:10:43 [NOTICE] Emergency mode inactivated.

Disk Hot-Swap

Swaps the disks without stopping the service. The parameters must be the same as those in <Disk>.

http://127.0.0.1:10040/command/unmount?disk=...
http://127.0.0.1:10040/command/umount?disk=...

The excluded disk is immediately inactivated and all content saved on the disk is invalidated. The status of the disk excluded by the administrator is set to “Unmounted”.

To reactivate the disk, the following should be called.

http://127.0.0.1:10040/command/mount?disk=...

All content in the reactivated disk is invalidated.

SyncStale

After an abnormal service termination, content that has been invalidated by Purge, Expire, or HardPurge may be skipped over by indexing (due to performance reasons). To make up for this, the API calls will be logged and go into effect when the service is restarted.

server.xml - <Server><Cache>

<SyncStale>ON</SyncStale>

	<SyncStale>
	ON (default) Synchronizes on restart.

	OFF Ignores.

The log can be found at ./stale.log and is initialized upon normal termination or regular indexing.

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STON Edge Server 2.3.4 documentation

Appendix A: Graph

All MRTG statistics are shown as PNG-format graphs. The call format is the resource and then the unit.

5 types of CPU graphs (dash, day, week, month, year)
http://127.0.0.1:10040/graph/cpu_dash.png
http://127.0.0.1:10040/graph/cpu_day.png
http://127.0.0.1:10040/graph/cpu_week.png
http://127.0.0.1:10040/graph/cpu_month.png
http://127.0.0.1:10040/graph/cpu_year.png

All graphs are provided in 5 different types.

	Type
	Size
	Time unit
	Period

	dash
	205 X 175
	5 min
	12 hours

	day
	580 X 203
	5 min
	2 days (48 hours)

	week
	580 X 203
	30 min
	2 weeks (14 days)

	month
	580 X 203
	2 hours
	7 weeks

	year
	580 X 203
	1 day
	18 months

A graph can have from one to three lines. The Main line is drawn in green, while the Sub line is drawn in blue. In graphs for “Week” and above, a Peak line is also displayed. The Peak line draws the highest value from smaller units in pink.

Note

If too many graphs are made at once, CPU usage will increase sharply and affect the service quality. To prevent this, please make sure to only draw one graph at a time.

Global Resource

The global resource graph shows the system status or resources related to STON. Below, the asterisk can be replaced with one of five types: dash, day, week, month, or year.

CPU

/graph/cpu_*.png

	Main Kernel + User

	Sub Kernel

STON CPU

/graph/stoncpu_*.png

	Main Kernel + User

	Sub Kernel

Memory

/graph/mem_*.png

	Main Total usage

	Sub STON usage

IO Wait

/graph/iowait_*.png

	Main IO Wait

Load Average

/graph/loadavg_*.png

	Main Load Average

Server Socket Event (Client -> STON)

/graph/ssockevent_*.png

	Main Accepted

	Sub Closed

Server Socket Usage (Client -> STON)

/graph/ssockusage_*.png

	Main Total server sockets

	Sub Established server sockets

Client Socket Event (STON -> Origin Server)

/graph/csockevent_*.png

	Main Connected client sockets

	Sub Closed client sockets

Client Socket Usage (STON -> Origin Server)

/graph/csockusage_*.png

	Main Total client sockets

	Sub Established client sockets

Denied IP Accesses

/graph/acldenied_*.png

	Main Denied clients

Event Queue

/graph/eq_*.png

	Main Length of event queue

Write Pending

/graph/wf2w_*.png

	Main Number of write-pending files

Successful URL Preprocessing

/graph/urlrewrite_*.png

	Main Number of preprocessed URLs

TCP Socket

/graph/tcpsocket_*.png

[image: ../_images/graph_tcpsocket_detail.png]

Virtual Host

The virtual host graph shows the status of all hosts or individual hosts. The vhost parameter can be used to choose a specific virtual host, but if it is omitted then it will provide the statistics of all virtual hosts.

http://127.0.0.1:10040/graph/vhost/mem_day.png?vhost=example.com

Below, the asterisk can be replaced with one of five types: dash, day, week, month, or year.

Hit Ratio

/graph/vhost/hitratio_*.png

	Main Request Hit Ratio

	Sub Byte Hit Ratio

Amount of Content

/graph/vhost/filecount_*.png

[image: ../_images/graph_filecount_detail.png]

Content Memory

/graph/vhost/mem_*.png

	Main Amount of content data loaded into memory

Delete Pending

/graph/vhost/wf2d_*.png

	Main Number of delete-pending files

Client Bypass

/graph/vhost/client_httpreq_bypass_*.png

	Main Bypassed client HTTP requests

Denied Client Requests

/graph/vhost/client_httpreq_denied_*.png

	Main Denied client requests

Client Sessions

/graph/vhost/client_http_session_*.png

	Main Total client sessions

	Sub Client sessions in the middle of transfer

Client Traffic

/graph/vhost/client_traffic_*.png

	Main Inbound

	Sub Outbound

Client Responses

/graph/vhost/client_http_res_*.png

	Main Number of client HTTP responses

	Sub Number of client HTTP requests

Detailed Client Responses

/graph/vhost/client_http_res_detail_*.png

[image: ../_images/graph_rescode_detail.png]

Client Transaction Completions

/graph/vhost/client_http_res_complete_*.png

	Main Number of completed client HTTP responses

	Sub Number of client HTTP requests

Client Response Time

/graph/vhost/client_http_res_time1_*.png

	Main HTTP response time for a client request

Client Completion Time

/graph/vhost/client_http_res_time2_*.png

	Main HTTP transaction completion time for a client request

Client Caching Response

/graph/vhost/client_http_res_hit_*.png

[image: ../_images/graph_filehit.png]

Client SSL Traffic

/graph/vhost/client_traffic_ssl_*.png

	Main Inbound

	Sub Outbound

Origin Server Sessions

/graph/vhost/origin_http_session_*.png

	Main Total origin sessions

	Sub Origin sessions in the middle of transfer

Origin Server Traffic

/graph/vhost/origin_traffic_*.png

	Main Inbound

	Sub Outbound

Origin Server Responses

/graph/vhost/origin_http_res_*.png

	Main Number of origin HTTP responses

	Sub Number of origin HTTP requests

Detailed Origin Server Responses

/graph/vhost/origin_http_res_detail_*.png

[image: ../_images/graph_rescode_detail.png]

Origin Server Transaction Completions

/graph/vhost/origin_http_res_complete_*.png

	Main Number of completed origin HTTP responses

	Sub Number of origin HTTP requests

Origin Server Response Time

/graph/vhost/origin_http_res_time1_*.png

	Main HTTP response time for requests sent to the origin server

Origin Server Completion Time

/graph/vhost/origin_http_res_time2_*.png

	Main HTTP transaction completion time for requests sent to the origin server

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STON Edge Server 2.3.4 documentation

Appendix B: Cacti Monitoring

This appendix will explain how to set up monitoring of multiple instances of STON using Cacti [http://www.cacti.net/]‘s Graph Tree. The following two prerequisites are required.

	A server with Cacti installed

	SNMP activation (see Chapter 11. SNMP)

Adding Templates

Using the Host Template provided by STON, the monitoring environment can easily be set up (download [http://webhard.winesoft.co.kr/ston/monitoring/cacti/ston_host_template.xml]).

[image: ../_images/cacti01.png]
Select [Import Templates].

[image: ../_images/cacti02.png]
Import cacti_host_template_ston.xml.

Device Registration

Register STON as a Cacti device.

[image: ../_images/cacti03.png]
Select [Devices].

[image: ../_images/cacti04.png]
Click the [Add] button in the [Devices] menu.

[image: ../_images/cacti05.png]
Fill in the device options.

	Input the name used for STON.

	Input STON’s IP address.

	Select “STON”.

	Select “Public”.

	Input the default port of 161.

Click the “Create” button to engage the device.

[image: ../_images/cacti06.png]
Engaged successfully.

[image: ../_images/cacti07.png]
Engagement error.

Note

If the SNMP engagement fails:

	Check STON to make sure SNMP is enabled.

	Check to see if the SNMP port number matches STON’s SNMP port number.

If the device engagement succeeds, you can use 18 different types of graph provided by the STON template.

[image: ../_images/cacti08.png]
Click “Create Graphs for this Host”.

[image: ../_images/cacti09.png]
There are 18 types of graphs provided.

Click the [Create] button and check the graphs that were created.

[image: ../_images/cacti10.png]
The graphs have been created.

Graph Tree Creation

Create Graph Trees.

[image: ../_images/cacti11.png]
Select [Graph Trees].

[image: ../_images/cacti12.png]
Click the [Add] button on the right side.

[image: ../_images/cacti13.png]
Create Graph Trees.

You can add STON to the Graph Tree.

[image: ../_images/cacti14.png]
Click the [Add] button in the [Tree Items] menu.

[image: ../_images/cacti15.png]
Select the [Tree Items] options.

	Select “Host”.

	Select the devices you will add.

	Select “Graph Template”.

Graph Check

Select [Graphs] in the upper left side to check if the graphs are displaying correctly.

[image: ../_images/cacti16.png]
Check regularly that the graphs are showing properly.

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	STON Edge Server 2.3.4 documentation

Appendix C: Dynamic Page Exceptions

Dynamic pages are web pages developed using web programming languages (e.g. JSP, PHP), and they can change based on client requests. If the following types of dynamic pages are cached for appropriate lengths of time, it will create an exceptional decrease in the load for web servers, WAS, and databases.

	Real-time orderings (Trending search terms or rankings)

	Search results

	API for inquiries

	Detailed product pages (stock)

Pages that cannot be cached are as follows.

	
	Private accounts

	Caching a page means that if a person reads a page, other people can also read that page. Nobody wants their private information exposed to other people. From a technical standpoint, most web sites will not allow you to view private information without first logging in. The condition that checks for login status on web servers should be configured in STON’s bypasses.

	
	Payment

	There are services that allow users to pay without logging in. All pages that are used for payment should be configured under caching exceptions.

	
	Cookie creation

	Cookies often contain information essential to the client. If a cookie created by User A is given to User B, a huge disaster will occur.Because of this, STON is configured to ignore all cookie headers given by the origin server.

	
	Write API

	The Read API can be effective with even 1 second of caching, but the Write API can malfunction if it is cached and a bad result is returned.

	
	Ticket problems

	Refers to reservations made in order like for concert tickets. There are many cases where this is done using WAS or a private server.

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	STON Edge Server 2.3.4 documentation

Appendix D: Release Notes

v2.4.x

2.4.3 (JAN 20, 2017)

Bug Fix

	Fixed infrequent Content-Encoding headers missing from compressed content responses

2.4.2 (JAN 18, 2017)

Feature/Policy Updates

	Vhost-Link feature added

Bug Fixes

	Fixed the unintended termination with negative Content-Length header value from origin servers

	Fixed the unintended termination from unstable origin server communications for MP3HLS packetizing

2.4.1 (NOV 24, 2016)

Feature/Policy Updates

	Processes origin HTTP responses with missing Reason-Phrase’s

	DIMS: supports canvas resizing

Bug Fixes

	Compression integrity improved

	VLC media player compatibility for M4A HLS playback

	Abnormal termination from missing DIMS resize dimensions

2.4.0 (NOV 07, 2016)

Feature/Policy Updates

	Modify HTTP request URL to origin.

	Support M4A HLS

Bug Fix

	Enhanced processing for invalid MP4 size headers.

v2.3.x

2.3.9 (OCT 28, 2016)

Bug Fix

	TTL: Content was not updated few seconds in some circumstances

2.3.8 (OCT 13, 2016)

Bug Fix

	Enhanced processing for invalid MP4 size headers

2.3.7 (SEP 26, 2016)

Feature/Policy Updates

	DIMS: allocates system resource for image conversion

	Origin Health Checker: also includes stand-by origin servers

Bug Fix

	Compression on/off

2.3.6 (AUG 16, 2016)

Feature/Policy Updates

	Client socket processing policy update

	DIMS: PNG alpha compositing update for JPG conversion

Bug Fix

	Unintended termination from a Hardpurge API call in DIMS processing

2.3.5 (JUL 1, 2016)

Feature/Policy Updates

	Improved native HLS player compatibility

	DIMS image cropping in the unfixed aspect ratio

Bug Fix

	Unintended termination upon an origin status reset API call with Origin Health-Checker activated

2.3.4 (JUN 3, 2016)

Feature/Policy Updates

	Supports large MP4 files with 32-bit mdat atoms (4GB or more)

	Supports Host header value in unknown access logs

	WM installation : Apache Manual folder deleted for security

	WM installation : “winesoft” Apache account as nologin

Bug Fixes

	HLS: CPU overload upon some videos

	Termination upon bypassing HTTP requests

	Client IP shown as 0.0.0.0 in access logs

	Configuration backup failure for over 260 virtualhosts generated

2.3.3 (APR 26, 2016)

Bug Fixes

	Unintended 404 responses upon origin host, DIMS and compression configured [2.3.0 ~ 2.3.2]

	Unintended CPU overload upon SNMP View deletion

	WM - 0 value input error from SNMP GlobalMIn

2.3.2 (MAR 22, 2016)

Feature/Policy Update

	HLS index file compatibility improved

Bug Fixes

	Unintended termination from encryption/decryption with a bad SSL handshake

	Occasional termination from active ACLs

2.3.1 (FEB 23, 2016)

	Supports MP3 streaming in HLS

Feature/Policy Updates

	
	Custom access log format

	
%..y Request HTTP header size

%..z Response HTTP header size

Bug Fix

	WM : unintended failure in no destination port configured

2.3.0 (FEB 3, 2016)

	Supports on-the-fly compression.

Bug Fixes

	Expires Header: incorrect max-age value from modification

	DIMS Statistics: incorrect average value from faulty denominator

v2.2.x

2.2.5 (JAN 12, 2016)

Feature/Policy Updates

	HTTP response code update: “451 Unavailable For Legal Reasons”

Bug Fix

	TLS : unintended termination upon attacking packets

2.2.4 (DEC 11, 2015)

Bug Fix

	HLS : playback termination upon media segmentation

2.2.3 (DEC 4, 2015)

Bug Fix

	Virtualhost generation failure from Web Management in 2.2.2

2.2.2 (DEC 3, 2015)

	Modifies HTTP request header to origin

Feature/Policy Updates

	HTTP request/response header modification : ‘put’ action added, which inserts the header

2.2.1 (NOV 19, 2015)

Bug Fixes

	TLS-Handshake: overlapping ChangeCipherSpec return upon separate ChangeCipherSpec and ClientFinished messages

	DIMS : size ratio malfuction from Animated GIF resizing

2.2.0 (NOV 4, 2015)

	Supports TLS 1.2 (including Forward Secrecy and other security policy updates)

Bug Fixes

	Abnormal termination upon no disk information

	
	TLS-Handshake version choice

	Before. TLSPlaintext.version
After. ClientHello.client.version

v2.1.x

2.1.9 (OCT 15, 2015)

Bug Fix

	MP4 HLS : Video playback malfunction from 2.1.7

2.1.8 (OCT 14, 2015)

Bug Fix

	Abnormal termination upon manager port access from blocked IPs (2.1.6 ~ 7)

2.1.7 (OCT 7, 2015)

	Multi-Trimming : Stitches multiple segments trimmed from the origin videos.

Feature/Policy Updates

	Access Log : Supports TrimCIP option for X-Forwarded-For header

Bug Fixes

	MP4 HLS : Video jittering from few profiles

	DIMS : B 500 Internal Error responses with zero TTLs

	Unintended space characters in X-Forwarded-For c-ip logging

2.1.6 (SEP 9, 2015)

Feature/Policy Updates

	DIMS : Converts only the first frames for Animated GIF

Bug Fixes

	Chapter 14. Access Control : IP access control malfuction

	DIMS : ‘+’ coordinate malfuction for cropping images

2.1.5 (AUG 18, 2015)

	Virtualhost Sub-Path : Supports virtualhost sub-path by accessing paths

	Facade Virtual Host: Supports separate client traffic statstics and access logs by accessing domains

2.1.4 (JUL 31, 2015)

Feature/Policy Updates

	Less CPU usage

	https-multi-nic: listening on multiple NICs

	
	URI policy change for Access Control

	Before. keywords omitted (such as MP4HLS) from URIs
After. the whole URIs

Bug Fixes

	DIMS : encoded strings unrecognized

	HardPurge : case-sensitive error

	Configuration History: POST request exception missing

2.1.3 (JUN 25, 2015)

Feature/Policy Updates

	SyncStale : All content control (Purge , Expire and HardPurge) API calls tracked and logged (synchronization with stale logs and index when restarted)

	%u expression added to Custom Access Log Format (full-length URIs from client requests logged)

Bug Fixes

	DIMS : image revalidation failure with no Last-Modified header from origin

	Trimming : CPU overload for >4GB trimmed MP4s

	Via header missing in error page responses

2.1.2 (MAY 29, 2015)

Web Management - English support

Feature/Policy Updates

	Single-core CPU support

Bug Fix

	Customized module malfunction in the Indexing mode

2.1.1 (MAY 7, 2015)

MP4 HLS : Provides bandwidth and resolution information in StreamAlternates [https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/art/indexing_2x.png]

Bug Fix

	Abnormal termination caused by broken header MP4 video analysis

2.1.0 (APR 15, 2015)

Indexing added

Animated GIF DIMS supported

DIMS statistics supported

Feature/Policy Updates

	
	Directory expression removed from Chapter 5. Content Purge (purge, expire, hardpurge, expireafter)

	URL by directory expression (example.com/img/) caches the returned file from the origin.
Directory expression (example.com/img/) merged with pattern (example.com/img/*)

	
	API expressions added

	
/monitoring/average.xml

/monitoring/average.json

/monitoring/realtime.xml

/monitoring/realtime.json

/monitoring/fileinfo.json

/monitoring/hwinfo.json

/monitoring/cpuinfo.json

/monitoring/vhostslist.json

/monitoring/geoiplist.json

/monitoring/ssl.json

/monitoring/cacheresource.json

/monitoring/origin.json

/monitoring/coldfiledist.json

	WM - resolv.conf editing removed

v2.0.x

2.0.7 (JUN 25, 2015)

Bug Fixes

	DIMS : image revalidation failure with no Last-Modified header from origin

	Trimming : CPU overload for >4GB trimmed MP4s

	Via header missing in error page responses

2.0.6 (APR 28, 2015)

Feature/Policy Updates

	WM - resolv.conf editing removed

Bug Fix

	abnormal termination from MP4 analysis with broken headers

2.0.5 (APR 1, 2015)

Feature/Policy Updates

	Serves trimmed MP4 by HLS
The following expressions trim the original media file (/vod.mp4) from 0 to 60 seconds and serve in HLS.
| /vod.mp4?start=0&end=60/mp4hls/index.m3u8
| /vod.mp4**/mp4hls/index.m3u8**?start=0&end=60
| /vod.mp4?start=0/mp4hls/index.m3u8?end=60

	HLS index file (.m3u8) update
Before. Version 1
After. Version 3 (changeable back to version 1)

Bug Fixes

	abnormal termination in HLS conversion with HTTP encoded special characters

	overloaded CPU for MP4 media with broken headers

	audio/video synchronization failure while serving MP4 with uneven audio keyframe in HLS

	RRD - statistics bug: average response time shown in total

	WM - forcing formatting new disks removed

2.0.4 (FEB 27, 2015)

Feature/Policy Updates

	Hash algorithm update at Origin Selection

Before. hash(URL) / servers

After. Consistent Hashing [http://en.wikipedia.org/wiki/Consistent_hashing]

	Client requested URI is usable as a parameter when redirecting by Virtual Host Access Control.

Bug Fix

	Disk full due to unremoved caching files

2.0.3 (FEB 9, 2015)

Feature/Policy Updates

	DIMS internalization and enhancement

	WM - traffic alert messages added

Bug Fix

	WM - Virtual host generation failure

2.0.2 (Jan 28, 2015)

	Able to pass User-Agent header value from clients when requesting to the origin server.

Bug Fixes

	Failed to trim MP4 files with MDAT length 1.

	WM - failed to show other clustered servers’ graph.

	WM - showing other clustered server’s status as the relevant one.

2.0.1 (DEC 30, 2014)

Bug Fix

	No HitRatio graph value

2.0.0 (DEC 17, 2014)

	Disk space optimization: just as downloaded from the origins. (please refer to Range Request)

	Memory Restriction added

	TLS 1.1 support

	SSL/TLS Acceleration support by AES-NI.

	ECDHE CipherSuite support (please refer to CipherSuite Selection)

	DNS Log added

	Policy Update: Seprate TTLs for each IP if the origin server is configured by domain

	origin Error Detection and Recovery added

	origin Health-Checker added

	System Free Memory added

	etc.
	Supported operating system updaated: CentOS 6.2 or later, Ubuntu 10.01 or later

	NSCD daemon included in the installation package

	DIMS included

	Restart required after Caching Reset

	<DNSBackup> removed

	<MaxFileCount> removed

	<Distribution> removed, integrated into Origin Selection

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	STON Edge Server 2.3.4 documentation

Index

 Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

 _images/intro_3layers.png

_images/cacti05.png
BT R s mesmoatl deserpton.

PO S5 hstame o 19 sdress for i dvice.

Host Template
ERSSTRENER: remptte s use
Guoressacoted o s o

S ke ooy
isable Hast

BB o dunie s cecks o s o

Avalabiy Reschabity Opions

e oo s o determine host o avaible fo ol
NOTE 65 recammended ot 55 marmam, SO sioeys oo et
ping Timeout velve

e Yl e fo ot LCHP 3 LGP o, T host S et
e e s e

e e e, th nomber of g reiescacs i ot befre i

Eroee e S vrsion o th devic.

snne Community

SR e o o s v

Eerihe U0 port nmber o s o SUNP (deoua 163

snme Tineout

e i number of misconds Cach i e o 3 S response (does
ook w1 BB

esmun 010’ per Gt Request

pechad e number o O ok can b shted i 3 sl S5 Get et

PRSI .. mm— [0

The momar o Concuart e eaés o us o oo is device, Th sl tohe |1 Thvead (defaut) +

SNV Uptime .

w00

0

0

_images/icons_shopping.png
Bazillion Files Gazillion Clients Microsecond Customised TTL
Latency

o 22 Ty

_images/conf_media_mp4trimming_range.png
GET /video. mp4 7start=1208end=420
Q Range: bytes=3145728 -

video.mp4

206 Partal Content -@ (10min)

3145728 -

_images/helloworld3.png
> € [example.com

ston Edge Delivery Server

A7t 4oz AR UFL

ston

A8t ol

WiNe]

2014 copyright reserved.

_images/wm_vhost_conf_sub_ttl.png
Q TTL = 180
g TTL=60
Q TTL=60

<TTL>180</TTL>

<TTL>60</TTL>

“VHostDefault

_images/perf_sockets.png
20,000

30,000

Established

_images/wm_cluseter1.png
Clustering — Formation

This server is not added to any cluster.
Input a cluster name and create one.
Clustering helps managing servers collectively.

Cluster Name

_images/faq_stonerror.jpg
500 Internal Server Error

No origin s

_images/conf_fs1.png
Is -1 /tmp/fuse

Userspace

_images/wm_vhost_conf_sub1.png
Assign origin server address. [~] (Keyword: |

Type Address

Active

Standby

Connecting Options

Balance Mode | |RoundRobin [~
Rouse sessions Terminate unused sessions for| a1 seconds

General

Content Size Downloadable from orisin: | 0| MB (0or no linit)

Caching for redirecting responses

Range Reausst for infial content caching or update

Whole client request delivery for intial content caching or update

E-Tag from (Etag:"Last-Modified Time: File Sizs")

HTTP Header

Useragent Header: [STON |~ (Bypass
Host Header : [Virual Host Name | - | { Bypass

WL-Proxy-Client-IP Header

¥-Forwardad-For Headsr ncludes ¢ [All Prosy s [<] (Bvpass

(X-Forwarded-For: 220.61.7.150, §1.1.8,100, 128.134.9.1)

_images/conf_redirectiontrace.png
GET /mg jpg
GET fmg jpg
| 302 Redirect
Location: inew_img jog
fimg jpg
GET Inew_imgjpg
2000k

Inew_imgjpg

_images/wm_update_info.png
[Last accessed: 2015-06-19 11:33:33] [Account Management] [admin Logout]
[Update available][Last configured: 2015-06-17 10:27:44] [Configuration Management]

- v -
localhost.localdomain = 192.168.10.103 Log [STONI[WM]

_images/wm_main.jpg
] [Account Management] [admin Logout]

— E 44] [Configuration Management]
=STON w12 localhost.localdomain'- 192.168.10.103 9 [STONI[WM]

System Configuration

Global Settings

) day 20 hour 0 Statistics updated: 2015

Clustering w0 10
200 106 B
Content Control = @ g PR w0
g S g &
Server Status F @ g 2 s g ©
= 3 4 5 w0 SR s 40
Service Status z B g £
E 2 3 s =g 2
o o o
Go 1012 1 18 o5 o6 10 12 14 18 o5 o6 10 12 14 18 o5 o6 10 12 14 18
Userskernel B Kernel Load Average Usea ston Request ayte
POWERED BY = L o q =] [O Req | By
WINEIE:lii 16.19 (5.04)% Free: 5.77GB R: 97.44%, 95.86%
Cheni Traffic Chel“ ‘Session Cheni Response Time Cheni Responses
Language : English ~
10n §
ol 5.0k 400 L4k
won i a0k] L2k
. o 5 300 8
g oson [g 30k 3 N
13 ol H Aor g om 5 bor
20m s & 100 i
T 0.2k
o 0.0 o 0.0
G o 10 12 1 18 G5 oo 10 12 14 18 o5 o6 10 12 14 18 G o 10 12 1 18
Bmbound M outbound | @ Total Bctive | @ Response Tine E2 O3 ms B
In: 6.13 Mbps, Out: 88.45 Mbps. 4544 (1033) 720 ms. 1413 (2:668,3: 745, 4: 745,5:745)
Ongin Traffic Origin Response Time Origin Responses
® 2000
som 70 N a0
son . g 10 N
i g o = §
£ som g » 2 100 =
£ 2.0m & 3 H &
Lon 0 e My 5 s -
10 i
0.0 o o o
o5 o6 10 12 14 18 o5 06 10 12 14 18 o5 o6 10 12 14 18 o5 o6 10 12 14 18
BImbound M outbound | @ Total Bictive | O Response Tine B2 O3 @4 B
In: 3.62 Mbps, Out: 73.76 kbps 84 (32) 23917 ms 40 (2:36,3:4,4:;

_images/conf_ftpclient.png
Virtual Host FTP1_Client
Virtual Host

Virtual Host FTP2_Client
Virtual Host

_images/cacti10.png
‘Graph Management
Graph Trees.
Data Sources

Devices.

Data Queries

Data Input Hethods.

‘Graph Templates.
Host Templatez
Data Templates.

Import/Export

Crested graph Test - Losd Average
Crested gragh Tt - Memary

Crested gragh Test - CPU.

Crested gragh Test - Senersocet

Crested graph Test . TCP Socet

Crested gragh Tt - Caching Responze
Crested graph Test - Client Responses

Crested graphs Test - lient Responses(Detied)
Crested gragh: Tt - Client ResponzeTime
Crested graph Test - ClientSezsons

Crested graph Test - Client Trffc

Crested graph Test . Content Memory

Crested gragh Tet - Wit Rt

Crested grah Test - Orgin Responses

Crested graph Test . Orgin Responses(Detaied)
Crested gragh Tet - Orgin ResponzeTime
Crested graph Test - Orgin Secsons

Crested graph Test - Orgin Troffc

_images/conf_dims2.png
f

T_“.

_images/faq_wowza1.png
Global Settings ~ File System

File System : [On[]

(Mount Path : [cachefs . Directory Delimiter : 1 |)

 STON must be restarted if File System configuration is changed.

_images/conf_fs2.png
HHHTH

[Socket] [Thread]
HTTP Server File System

| Virtual Host ‘ ‘ Virtual Host ‘ ‘ irtual Host

Lvinual Husq

_images/vhostdefault.png
server.xmil

vhosts.xml

<VHostDefault>
A=1
B=2
<IVHostDefault>

www.example.com

_images/conf_media_mp4trimming.png
GET video.mp4

2000k
video.mpd.

(10 min)
GET fvideo.mpd?start=120&end=420

200 oK B Bwm]

_images/conf_fs4.png
1) fwinesoft.co.kr

Directory
inesoft.co krione fone.
- .
Directory >
® Minssof o ronaltwo onertwo
-+
Directory
Iwinesoft.co.krione/twolthree loneltwoithree
a4 -
orectory >
S A,
5 Iwinesoft.co krlone/twolthree/ston jpg fone/twolthreelston.jpg
4
File Attribute

_images/conf_origin_fullrangeinit1.png
e

GET fvideo.mp4

Apache

_images/stats_dirdepth.jpg
I {_fimg } {__/img/thumnail | 70 {_fimg } {__fimg/thumnail | 70
0 10 a0
Timgldetal | 10 Tmgloetal] 10
0 10
10 a0
0 i
video/intro 10 video/intro 10
10

20

_images/cacti08.png
Logpedn 35 admin

[EEEEE test (192.168.0.62)
ot

262 0 b 2, 22 vt
Hortmme. s oo *

cotlction ethods | amtembumunt I

_images/snmp_vhostindex.png
Kim.com lee.com park.com
1 2 3
Kim.com park.com
1 3
Kim.com choi.com park.com
1 2 3
ahn.com choi.com park.com ‘moon.com
1 2 3 4

_images/wm_ctrl2.png
Content Control — Caching Status Check

[imagewinesoft.co.kr [+] /ima/sub/2013/06/12/sr.jpa

Cunrent Server

UAL. hitp://imags. winesoft.co.kr/ima/sub/2013/08/12/sr.ipa

Local Path /eachel/image.winesof.co.ki/00/00/00 | File Creation Time [20150613 10:03:24, 7]
/05.bin

File Size 1628842 Cached File Size 1628842

Accept-Encoding ¥ Last-Modiied [2015.02.24 05:45:23, -9350648]

Responss Code 20 Content-Type image/ipes

cache-control [not-specifisd] Compression -

TIL Remained [20150815 11:13:25, 1734 Transfer-Encoding 1

Redirect-Location - Content-Disposition -

Caching Upats Time. [2015.06.13 10:03:25, -5 1 Last Accessed Time [20150613 10:03:24, -7

Expiration Time roo0l Status Cached

ETag 54ebdebb: 18320 Referral Time. 3

Disk Index 0 File ID a1mazre

Opened (File) ¥ Updating (File) -

Downloaders 0 Custam TTL -

Reserved to Destroyed 1 Local File v

Small-sized file Recoainition 1 Deleted N

Size-sensitive ¥ Furged 1

lanore-IMS 1 No-Cache N

Age Header Guideline 0 Origin Header -

SplitFile N

_images/graph_filecount_detail.png
32KB, W ~B4KB, W ~125KB,
100ME, B ~512MB, B ~1GE, B ~4GE,

~256KB, W ~1MB,
AGB~, @ Total

_images/perf_keepalive.png
Active

Idle

_images/conf_media_av.png
Bandwidth Throttiing

_images/02_disk.png
Catalog & Log

Storage

Contents.

Contents.

Contents.

STON

_images/cacti11.png
Console Loggec

[T | vou are now logged into Cacti. You can follow these basic steps to get started.
e Grphs

(R e devicesfor network

« Create graphs for your new devices
your new graphs.

m‘n_ — Click!
e

e

s

e

_images/cacti13.png
Graph Trees [new]

Name.
& useu name fo i graph e,

Sorting Type.
Chosse haw tems in this ee il be sated.

[WineSOFT honitoring

Cancel

_images/ssl_alert.png
@ There is a problem with this website's security certificate.

The security certificate presented by this website was issued for a different website's address.

Security certificate problems may indicate an attempt to fool you or intercept any data you send to the
server.

We recommend that you close this webpage and do not continue to this website.
@ Click here to close this webpage.

@ Continue to this website (not recommended).

© More information

_images/nocache_maxage.png
g ‘cache-control: max-age - cache-control: no-cache

Origin

_images/cacti03.png
Consale
New: Graphs

« Create graphs for your new d
Graph Management « View your new graphs

Graph Trees.
Dats Sources

Device:

Cotlection ethod=]

_images/indexing_hot_cold.png
-{ Inew.jpg Hot Content

lold jog Cold Content

disk

_images/wm_vhost_conf1.png
Default B virtual Host — Configuration (Origin Server) Apply | | Applyto allthe clustered | Refresh

Origin Server Mamt. Client | Log Content Cachina Content Control | Bypass Statistics| Media | DIMS Bandwidth Control File System

_images/wm_cluster_multiport2.png
Allocate Clustering Port

Please select Clustering Port.

No separate Clustering Port
8500 (Connected Port)
separate | © 0!

% Multi-ports confiqured at pache

_images/wm_ctrl3.png
Content Control — Caching Manageme:

image.winesoft co.kr [] /ima/sub/2013/06/12/sr.ipa

Current Server

e | (B

Cluster

Processed Result - Purge

AL hitp://imags. winesoft.co.kr/ima/sub/201 3/08/12/sr.ipa
Files 2 size [y Time Spent ons

_images/perf_keepalive2.png
Idle Sockets (=Memory Cost)

Session Reusability

Client Keep-Alive Sec.

_images/conf_fs5.png
ftualtost)

1) fwinesoft.co.kr

Directory

jnesoft.co.krione.

Directory

3 fwinesoft.co krfone/two

Directory
[P
Iwinesoft.co krlone/twolthree
Directory
5

5! Jwinesoft.co krfone/twolthree/ston jpg

Jone/twolthreelston jpg

-

File Attribute

_images/graph_tcpsocket_detail.png
M Established,

Timewait, @ Orphan, W Alloc, W Mem

_images/graph_filehit.png
W TCP_HIT, @ TCP_IMS_HIT, @ TCP_REFRESH_HIT, M TCP_REF_FAILHIT, @ TCP_NEGATIVE_HIT, B TCP_MISS,
W TCP_REFRESH_MISS, m TCP_CLIENT_REFRESH_MISS, B TCP_DENIED, M TCP_ERROR, M Requests

_images/dims.png
Q img Jpg/12ABIrosizol500x5001

g Jmg. wmm«p«wnm

g img pg/12ABIcomposite/watermaric/

_images/view1.png
baseball.com (
baseball.com baseball.com

basketball.com

=ie

basketball.com

basketball.com

E

football.com (
f

football.com

football.com

=ille

sports.com/football

SNMP Q

Admi

_images/cacti09.png
Cretes Servr_Stos stn - Losd Average

Cretes ervie St -Gt Resporses
Creste Senie_Stts - Clen Resporses(oenied)
Cretes Servie_Stts - Gt ResporceTine
Cretes Servie_Stts - ChotSesions

Crete Servie_Stats - Cian T

Crete Service St - Orign Respanss(Oesiad)
Creste Senvie_Stats - Orign Respansime

Cretes ervice_Stts - Orign_Sessions

_images/faq_ssl2.jpg
Extension Id: 2.5.29.17 (id-ce-subjectaltame)
© GeneralNames: 3 items
© GeneralName: dnsName (2)

dNsName: *. gstatic.com
© GeneralName: dnsName (2)
dNsName: *.metric.gstatic.com
© GeneralName: dnsName (2)
dNSName: gstatic.com

_images/casesensitive.png
fimgipg

/imgipg

¢

1IMG PG

fmaipg

MG PG

¢

MGG

Origin

_images/bodyratio1.png
Hot Map

Body (=Contents Data)

<BodyRatio>

_images/faq_wowza3.png
Live Video Streaming
Flash RTMP Player

Server: /71821680 16/v0d

Stream: [MPA/TPAa0AMPE Disconnec

Status:

_images/stat_filesystem1.png
1) HTTP Request | APACHE]

@ File read

-

5 HTTP Request

@ TCP_MISS
Origin Download

TCP_HIT

_images/10g_cpu.jpg
1GB

4KB X 262,144

-
(123111

(1]

_images/wm_gstat1.png
Server Statu:

System Informat

Version

@ Linux version 2.6.32-358,s16.x36_64 (mockbuild@ceba, bsys. dev.centos.ora) (gcc version 4.4.7 20120313 (Red Hat 4.4.7-3) (GCC)) #1 SMP Fri Feb 22
003128 LTC 2013
STON 212

o
b}
=

Cores 4
Model Intel(R) Core(Th) I5-3470 CPU @ 3.20GHz
CPU MHz 3601000
Cache Size 6144 kB

Memory
Physical Memory 15GB

NIC(1)

Model

Intsl Corporation 82545EM Gigabit Etheret

Controller (Copper) (rev 01) 182.188.10.103 OB0Ci 28T

Disk
sda DELL PEFC &1 (scsi) 105705.98 MB 21439 MB
s DELL PEFC &1 (scsi) 10570538 MB 597,23 MB
sdc DELL PEFC &1 (scsi) 105705.98 MB 23042.89 MB
sad DELL PEFC &1 (sc5i) 10570558 M 215,58 MB

sde DELL PERC 8/ (scsi) 10570598 MB 2268.41 MB

_images/cacti06.png
STON (192.168.0.62)
JSNMP Information *Create Graphs for this Host

bptine 547200 0 6oy, b, 47 mintes *Data Source List
estname cshor o *Graph List

_images/cacti04.png
<< previom Shoirg o 1o 4o 4 1] >
P Y T TR "

_images/graph_rescode_detail.png
W 2xx, W 3xx, W dxx, B 5xx, B Requests

_images/wm_update_page_alert.png
Outbound: 32,33 Mbps, Sessions: 50

STON version 2.1.2 is released.

Update to the latest version?

New Features

I « Web Management - English support

Feature / Policy Updates
+ Single-core CPU support

Bug Fixes
+ Customized module malfunction in the Memory Indexing mode

Read more

_images/ston.png

_images/conf_files.png
Iconflvirtual host)/

querystring.ixt

bypass.txt
server.xml T

expires bt

vhosts.xml

aclxt

headers i

throttiing ixt

postbody bt

([

_images/acceptencoding.png
limgipg
AcceptEncoding: gzip, deflate

imgjpg
AcceptEncoding: ip, defate

¢

fimgipg

fimgipg

/imgipg

¢

fmgjpg

Origin

_images/faq_ssl1.jpg
@ There is a problem with this website's security certificate.

The security certificate presented by this website was issued for a different website's address.

Security certificate problems may indicate an attempt to fool you or intercept any data you send to the
server.

We recommend that you close this webpage and do not continue to this website.
@ Click here to close this webpage.

@ Continue to this website (not recommended).

© More information

_images/adv_vhost_link_worst.png
404 Not Found

1403 Forbidden
helloworld.com

example.com

_images/intro_reference.png
Sl??elecom EBS o. ulEXI:lN MQ“'! @GSHISZ‘-*!

o e
©HanGame MESOET XLGAMES

— >
vemsot’ Q@ netmarble BameMecd SBUE

e

@ Gametree B ‘/X Actoz Soft PN T
) - Hvosuns || 3
SK broadband m coupang WEma' CPRICE i
GSSH P pomart Fopma @WURIwwazus
my real shop v N | FRA
. KakaoTalk w afreeca™& mMQgoon \ I-AB
" Hy = Newstomato
OSE S8 {gryLE2a HEE) deinside.com
Sayestalk @rsst omaitel @ nrrmwnne ClUnet@®
nANUMIneT DMCweoia

Clunet@ eEg|TAsy

o= PR net (Qtomato
: olo1 s HEUZ opuorg W‘mnProtect
(o B S0 — I

_images/wm_cluster_multiport.png
ServerRoot "/usr/local/ston/wm"™
ServerName ston um

LoadModule phpS_module modules/1ibphps . so

<Iftodule 'mpm netware module>
<Iftiodule 'mpm_winnt_module>

User winesoft
Group winesoft

</TrMoaule>
</TrMoaule>

ServerAdmin ston.cs@winesoft.co.kr

_images/conf_update1.png
[Last accessed: 2015-06-19 11:33:33] [Account Management] [admin Logout]
[Update available][Last configured: 2015-06-17 10:27:44] [Configuration Management]
Log [STONI[WM]

_images/cacti15.png
o R —— =0
BT ot s

Grah Grovomo,
e

===

_images/WineSOFT_origin.png
“.

WineSOFT

_images/perf_refreshexpired2.jpg
Contents|
Update!

_images/wm_vhost_list.png
Virtual Host

ist

Statistics Time : 2015-06-19 07:30:00

X STON traffic does not count TCP Headers.
3 Might differ by 8~10 percent from switch traffic.

Client origin

Virual Ho Uptime Hit Ratio ndwidth Action
Total) Outboung Total) Inbound

nage.winesoftco ks | 20 98 20 nour 45 min 9r.27% B0.66% e 1087680 601 Mbps a5 Edll 1.16 Mbps
sec

dovn.wanesotcokr | 20 98 20 nour 45 min 9%.12% %.85% 29125 536/1395 53,45 Mbps a/ar 19751 244 Mbps
sec

Media Wnesom.eo.kt | 20 day 20 hour 45 min 9%.18% 9.69% Ba0/642 634/1522 60,29 Mbps W/ 2750 317 Mbps
14 sec

m.winesoft co.kr 20 day 20 our 45 i 100 9.94% 193/193 137/1379 535 Mbps 00 2 56,69 kbps
sec

Search winesof.co.kr | 20 day 20 hour 45 min 100 93.99% 25/281 204/2051 7,48 Mbps 00 o1 1.35 kops
14 sec

shop,vanesoticokr | 2003y 20 nour 45 min 97.62% 7.81% a/49 &8 11,63 Mbps 13 12 1.41 Mops
sec

static.winesoflco.kr | 20 day 20 hour 45 min 100 %5.97% g 551 52299 kbps 00 00 20,84 kbps
14 sec

el winescficokr | 2082 20 our 45 min 100 92.95% g 2 271,89 kbps 00 00 121,99 bps
sec

SUPPOILWINESOM.CO.Kr | 20 day 20 hour 45 min 100 92.95% " s 5167 kbps 00 00 2,96 bps
14 sec

adminwinesofco ks | 20 98 20 nour 45 min 100 92.99% 146147 62/318 8.5 Mbps 00 o1 67077 bps
sec

dev.winesoftco.kr | 20 day 20 hour 45 min 7.42% 51.07% "8 /63 759 kops o2 2710 193,47 kbps
14 sec

qa.winesoft co.kr 20 day 20 our 45 i 100 9B.47% &7 /60 28,73 kbps 00 o1 374 kbps
sec

_images/wm_cluseter3_2.png
Clustering — Client Responses (Detail)

103.17.24.90 - Daily (48 Hours, 5 Min Average)

1618 20 22 00 02 04 06 03 10 12 15 16 15 20 22 00 02 04 06 08 10 12 14
Max Average current
B 2xx 120.00 56.86 96.00
3xx 0.00 0.00 0.00
0 axx 39.50 16.44 21000
B 5 0.0 0.00 0.00
Requests 152.50 73.78 117.00

103.17.24.92 - Daily (48 Hours, 5 Min Average)

viax Average curzent
B2 230.00 128.01 121.00
O 3xx 1.00 0.00
0 axx 1.50 0.00
e 0.00 0.00
B requests 232.00 121,50

103.17.24.93 - Daily (48 Hours, 5 Min Average)

20
10
3w
g e
& 40
2
1618 20 22 00 02 G 06 08 10 12 14 16 18 20 22 00 62 G 06 03 10 12 14
Hax Average current
B 2xx 250 it 17.00
o 3 aa50 e 77,00
B 0.00 0.00 0’00
5 000 000 0.00
B Requests 12350 o147 s5.00

_images/cacti14.png
STONTREE
tanual Ordering (No Sorting) *

]

Expand Al || Collapse Al

o Graph Tree Items

Retum || Save

_images/conf_bandwidththrottling2.png
No bandwidth throtting

Boost(sec) X Bandwidth X Ratio(%)
No bandwidth throtting

4 Bandwidth X Ratio(%)

_images/maxsockets.png
Close all the excessive client sockets.

_images/wm_login.jpg
ESTON -

[F] Keep me Ioaged in

Copyright(c) 2015 WineSOFT Inc. All ights reserved.

_images/private_bypass2.jpg
[|

STON

_images/querystring.png
e
e
e

fimg jpg /imgipg
fmaipg
/img.jpgnum=1 fimg jpg?num=1
Jmg Jpg2num=1
/img.jpg7num=2 fimg jpgnum=2
Img fpg?num=2

\—/

Origin

_images/wm_cluster_multiport1.png
Clustering — Formation

This server is not added to any cluster.
Input a cluster name and create one.
Clustering helps managing servers collectively.

Cluster Name

Current server to add

Server IP 192,188.10.103

Clustering Port | 8501

_images/wm_vhost_new1.png
rtual Host

Virtual Host Name : newsite. com

From (www,example,com [=]) vinual Host ([EIETS

Origin Server (ses< +
Origin Server Management «sex< «
Client ‘ses +

Log ‘ese

Content Caching ess -
Content Control ess -
Bypass (e -

Statistics ses<

Media ees

DIMS (sews +

Bandwidth Control «ses< -

File System (ses<

_images/faq_emergency1.png
I MemoryBiock being ransmited to cient ([MemoryBliock being downloaded from origin server [LL] Reusable MemoryBlock

releasenote1-1.html

 Navigation

 		
 index

 		STON Edge Server 2.3.4 documentation »

Appendix A: Release Notes

v2.3.x

2.3.7 (2016.09.26)

기능개선/정책변경

		dims 기능을 이용해서 이미지 변환시 시스템 자원 사용량을 제한하도록 정책 변경

		Health-Checker 기능 사용시 Standby 원본 서버도 검사하도록 정책 변경

버그수정

		handling-http-requests-compression 기능의 ON/OFF 설정이 반영되지 않던 버그 수정

2.3.6 (2016.08.16)

기능개선/정책변경

		일부 투명 PNG를 JPG로 포멧 변환시 배경이 검은색으로 변경되는 문제 수정

		비정상적인 클라이언트 소켓 처리 정책 강화

버그수정

		DIMS변환 중 Hardpurge API를 호출 할 경우 간헐적으로 비정상 종료되던 증상

2.3.5 (2016.07.01)

기능개선/정책변경

		Native HLS 모듈을 사용하는 플레이어와의 호환성 강화

		DIMS의 Crop 기능은 비율을 유지 하지 않고 입력한 크기로 Crop 하도록 정책 변경

버그수정

		Health-Checker 기능이 활성화 되어 있는 상태에서 원본상태 초기화 API 호출시 간헐적으로 비정상 종료되는 문제 수정

2.3.4 (2016.06.03)

기능개선/정책변경

		32bit atom으로 인코딩된 4기가 이상의 MP4 파일 지원

		unknown access 로그에 Host 헤더 값 추가

		WM - 보안권고 사항으로 STON 최초 설치 시 Apache manual 폴더 삭제

		WM - STON 최초 설치 시 Apache 구동 계정인 winesoft 계정을 nologin 권한으로 생성하도록 변경

버그수정

		HLS - 일부 영상에서 CPU를 과점유 하던 증상

		HTTP 요청이 바이패스 될 때 낮은 확률로 비정상 종료 되던 증상

		Access 로그에 클라이언트 IP가 0.0.0.0 으로 기록 되던 증상

		가상호스트가 260개 이상일 경우 설정 파일이 백업되지 않던 증상

2.3.3 (2016.04.26)

버그수정

		[2.3.0 ~ 2.3.2] 원본서버 Host 설정과 Dims, 압축 설정이 함께 되어 있는 경우 404 에러 코드를 응답하는 증상

		SNMP View 생성 후 삭제시 CPU 과점유 증상

		WM - SNMP GlobalMin 값을 0으로 설정 할 수 없던 증상

2.3.2 (2016.03.22)

기능개선/정책변경

		mp3-hls 인덱스 파일 호환성 강화

버그수정

		정상적인 Handshake없이 암/복호화가 진행되면 비정상 종료되던 증상

		ACL이 활성화된 상태에서 간헐적으로 비정상 종료되던 증상

2.3.1 (2016.02.25)

		MP3를 :ref:`mp3-hls`로 전송한다.

기능개선/정책변경

		Custom Access Log Format 추가
| %y 요청 HTTP 헤더 크기
| %z 응답 HTTP 헤더 크기

버그수정

		WM - Dest 포트를 입력하지 않으면 설정되지 않던 증상

2.3.0 (2016.02.03)

		컨텐츠를 :ref:`handling-http-requests-compression`하여 전송한다.

버그수정

		expires 헤더 시간을 Modification으로 설정한 경우 max-age 값이 잘못 계산되던 증상

		dims - 평균 통계 산출할 때 분모를 “성공” 횟수만 사용하던 증상

v2.2.x

2.2.5 (2016.01.12)

기능개선/정책변경

		HTTP <451 Unavailable For Legal Reasons> 응답코드 추가

버그수정

		TLS - 공격성 패킷에 비정상 종료되던 증상 (예외처리 강화)

2.2.4 (2015.12.11)

버그수정

		hls-http-live-streaming - 일부 영상에서 Segmentation정책때문에 재생되지 않던 증상

2.2.3 (2015.12.04)

버그수정

		v2.2.2에서 WM을 통해 가상호스트가 생성되지 않던 증상

2.2.2 (2015.12.04)

		원본으로 보내는 HTTP요청의 헤더를 :ref:`origin-modify-client`한다.

기능개선/정책변경

		handling-http-requests-modify-client - put액션 추가. 같은 이름의 헤더를 멀티라인으로 삽입한다.

2.2.1 (2015.11.19)

버그수정

		TLS - Handshake과정 중 클라이언트가 ChangeCipherSpec과 ClientFinished을 따로 보낼 때, 서버가 ChangeCipherSpec을 중복해서 보내던 증상

		DIMS - Animated GIF를 리사이즈할 때 비율이 유지되지 않던 증상

2.2.0 (2015.11.04)

		TLS 1.2를 지원한다. (+Forward Secrecy등 세세한 보안정책 강화)

버그수정

		디스크 정보를 얻지 못한 경우 비정상 종료되던 증상

		TLS - Handshake과정에서 Max버전을 선택하지 않던 증상
| Before. TLSPlaintext.version 사용
| After. ClientHello.client_version 사용

v2.1.x

2.1.9 (2015.10.15)

버그수정

		hls-http-live-streaming - v2.1.7 업데이트 이후 일부 영상이 정상적으로 재생되지 않던 증상

2.1.8 (2015.10.14)

버그수정

		[v2.1.6 ~ 2.1.7] 허용되지 않은 IP에서 매니저 포트로 접근시 비정상 종료되던 증상

2.1.7 (2015.10.07)

		multi-trimming - 시간 값을 기준으로 복수로 지정된 구간을 하나의 영상으로 추출한다.

기능개선/정책변경

		access - X-Forwarded-For헤더 기록옵션에 TrimCIP추가

버그수정

		hls-http-live-streaming - 일부 profile에서의 화면떨림 증상

		dims - TTL이 0으로 설정되어 있을 때 간헐적으로 500 Internal Error로 응답하던 증상

		X-Forwarded-For 헤더를 로그에 c-ip필드로 기록할 때 공백 문자가 포함되던 증상

2.1.6 (2015.09.10)

기능개선/정책변경

		dims - :ref:`animated-gif`에 대해 첫 장면만 변환할 수 있다.

버그수정

		Chapter 14. Access Control - IP허용/차단이 정상동작하지 않던 증상

		dims - Crop등에서 + 기호를 이용한 좌표지정이 되지 않던 증상

2.1.5 (2015.08.18)

		sub-path - 접근 경로에 따라 다른 가상호스트로 분기한다.

		facade - 접근 도메인에 따라 클라이언트 트래픽 통계와 Access로그를 분리한다.

2.1.4 (2015.07.31)

기능개선/정책변경

		CPU사용량 개선

		multi-nic - NIC이름으로 Listen한다.

		접근제어 시점 변경
| Before. 클라이언트가 요청한 URI에서 키워드(DIMS나 MP4HLS등) 제거 후 검사
| After. 클라이언트가 요청한 URI 그대로 검사

버그수정

		dims - 인코딩된 변환 문자열을 인식하지 못하던 증상

		hardpurge`가 :ref:`caching-policy-casesensitive 구분 정책을 따르지 않던 증상

		설정백업할 때 :ref:`post`이 누락되던 증상

2.1.3 (2015.06.25)

기능개선/정책변경

		syncstale - 관리(purge, expire, hardpurge) API호출이 인덱싱에 반영되지 않는 경우가 없도록 로그로 기록하여 서비스 재가동시 다시 반영한다.

		:ref:`admin-log-access-custom`에 %u표현 추가. 클라이언트가 요청한 Full URI를 기록한다.

버그수정

		dims - 원본서버에서 Last-Modified헤더를 주지 않을 때 이미지가 갱신되지 않던 증상

		:ref:`trimming`된 MP4의 크기가 4GB를 넘어갈 때 CPU를 과점유하던 증상

		에러 페이지를 응답할 때 via 헤더 설정이 반영되지 않던 증상

2.1.2 (2015.05.29)

		WM - 영문버전 지원

기능개선/정책변경

		Single Core 장비 지원

버그수정

		adv-topics-indexing 모드에서 커스터마이징 모듈이 오동작하던 증상

2.1.1 (2015.05.07)

		has-http-live-streaming - Stream Alternates형식을 통해 Bandwidth, Resolution 정보를 제공한다.

버그수정

		헤더가 깨진 MP4영상 분석 중 비정상 종료되던 증상

2.1.0 (2015.04.15)

		adv-topics-indexing 모드 추가.

		:ref:`dims`에서 Animated GIF포맷을 지원한다.

		:ref:`dims`변환 통계추가

기능개선/정책변경

		:ref:`caching-purge`에서 디렉토리 표현 제거
| 디렉토리 표현(example.com/img/)은 해당 URL에 해당하는 (원본서버가 응답한)파일 하나만을 의미한다.
| 기존의 디렉토리 표현(example.com/img/)은 패턴(example.com/img/*)으로 통합한다.

		API표현 추가
| /monitoring/average.xml
| /monitoring/average.json
| /monitoring/realtime.xml
| /monitoring/realtime.json
| /monitoring/fileinfo.json
| /monitoring/hwinfo.json
| /monitoring/cpuinfo.json
| /monitoring/vhostslist.json
| /monitoring/geoiplist.json
| /monitoring/ssl.json
| /monitoring/cacheresource.json
| /monitoring/origin.json
| /monitoring/coldfiledist.json

		WM - resolv.conf 편집기능 삭제

v2.0.x

2.0.8 (2015.08.06)

기능개선/정책변경

		CPU사용량 개선

버그수정

		설정백업할 때 POST 요청 예외조건이 누락되던 증상

2.0.7 (2015.06.25)

버그수정

		media_dims - 원본서버에서 Last-Modified헤더를 주지 않을 때 이미지가 갱신되지 않던 증상

		:ref:`trimming`된 MP4의 크기가 4GB를 넘어갈 때 CPU를 과점유하던 증상

		에러 페이지를 응답할 때 via 헤더 설정이 반영되지 않던 증상

2.0.6 (2015.04.28)

기능개선/정책변경

		WM - resolv.conf 편집기능 삭제

버그수정

		헤더가 깨진 MP4영상 분석 중 비정상 종료되던 증상

2.0.5 (2014.04.01)

기능개선/정책변경

		:ref:`trimming`된 영상을 :ref:`hls-http-live-streaming`로 서비스할 수 있다.
다음은 원본영상(/vod.mp4)의 0~60초 구간을 Trimming한 뒤 :ref:`hls-http-live-streaming`로 서비스하는 표현이다.
| /vod.mp4?start=0&end=60/mp4hls/index.m3u8
| /vod.mp4**/mp4hls/index.m3u8**?start=0&end=60
| /vod.mp4?start=0/mp4hls/index.m3u8?end=60

		hls-http-live-streaming 인덱스 파일(.m3u8) 버전 개선
| Before. 버전 1
| After. 버전 3 (버전 1로 변경 가능)

버그수정

		hls-http-live-streaming 변환 중 HTTP인코딩되는 특수문자가 있을 때 비정상 종료되던 증상

		헤더가 깨진 MP4영상 분석 중 CPU가 과도하게 점유되던 증상

		Audio의 KeyFrame이 균일하지 않은 MP4영상을 :ref:`hls-http-live-streaming`로 서비스할 때 Audio와 Video의 동기가 안맞는 증상

		RRD - 통계수집이 되지 않던 증상, 응답시간이 평균이 아니라 합으로 표시되던 증상

		WM - 신규 디스크 투입시 포맷을 강제하던 조건 제거

2.0.4 (2015.02.27)

기능개선/정책변경

		Origin Selection 의 Hash 알고리즘 변경
| Before. hash(URL) / 서버대수
| After. Consistent Hashing <http://en.wikipedia.org/wiki/Consistent_hashing>

		Virtual Host Access Control 를 통해 Redirect 할 때 클라이언트가 요청한 URI을 파라미터로 입력할 수 있다.

버그수정

		캐싱된 파일이 삭제되지 않아 디스크가 꽉 차던 증상

2.0.3 (2015.02.09)

기능개선/정책변경

		DIMS 내재화 및 고도화

		WM - 트래픽 관련 안내 메세지 추가

버그수정

		WM - 신규 가상호스트 생성이 실패 하는 버그 수정

2.0.2 (2015.01.28)

		원본서버에 캐싱요청할 때 클라이언트가 보낸 User-Agent헤더 값을 보낼 수 있다.

버그수정

		MDAT 길이가 1인 MP4파일의 Trimming이 되지 않던 증상

		WM - 클러스터 내의 다른 서버 그래프가 표시되지 않던 증상

		WM - 클러스터 내의 다른 서버들이 현재 서버로 보여지던 증상

2.0.1 (2014.12.30)

		HitRatio그래프가 0으로 표시되던 증상

2.0.0 (2014.12.17)

		원본에서 다운로드된 크기만큼만 디스크 공간사용. (origin-partsize 참조)

		Memory Restriction 기능추가.

		TLS 1.1 지원.

		AES-NI를 통해 SSL/TLS Acceleration 지원.

		ECDHE 계열의 CipherSuite를 지원. (CipherSuite Selection 참조)

		DNS Log 추가

		원본서버가 Domain일 경우 각 IP별 TTL을 사용하도록 정책변경.

		원본 Error Detection and Recovery 추가

		원본 Health-Checker 추가

		System Free Memory 추가

		기타
| 최소 실행환경 변경. (Cent 6.2이상, Ubuntu 10.01 이상)
| 설치 패키지에 NSCD데몬이 탑재.
| DIMS 기본 탑재.
| Caching Reset 후 STON 재시작하도록 변경.
| <DNSBackup> 기능 삭제
| <MaxFileCount> 기능 삭제.
| <Distribution> 기능 삭제. Origin Selection 기능에 통합.

v1.4.x

1.4.5 (2015.03.06)

버그수정

		캐싱된 파일이 삭제되지 않아 디스크가 꽉 차던 증상

		STONR 이 간헐적으로 비정상 종료되는 증상

1.4.4 (2014.12.15)

버그수정

		dims 처리시 404 Not Found로 응답되던 증상

1.4.3 (2014.12.10)

버그수정

		FTP 클라이언트에서 업로드 경로가 길면 오동작하는 증상

1.4.2 (2014.12.08)

		Purge(자동 복구) API가 HardPurge(복구 불가)로 동작하도록 :ref:`purge`할 수 있다.

		로그 롤링시 압축하도록 :ref:`id1`할 수 있다.

		FTP 클라이언트 기능강화 - 전송시간, 경로, 삭제, 백업 기능 추가

버그수정

		SSL/TLS Handshake과정 중 비정상 종료되던 증상

1.4.1 (2014.11.25)

		클라이언트가 보낸 URI를 가공없이 원본서버에 보내도록 :ref:`origin-wholeclientrequest`할 수 있다.

버그수정

		MP4영상에 SPS/PPS가 없을 때 비정상 종료되던 증상

		FTP 클라이언트가 Active모드로 동작하지 않던 증상

		WM - SNMP의 VhostMin, ViewMin을 0부터 설정가능하도록 수정 (기존 1부터)

1.4.0 (2014.11.12)

		Obtaining a License 도입

		WM - id12 추가

v1.3.x

1.3.20 (2014.11.05)

		[전역] id5 기능 추가. 설정된 최대 클라이언트(소켓) 수를 넘어가는 접근이 발생할 경우 클라이언트 접속 즉시 연결을 끊는다. 이는 솔루션과 플랫폼을 보호하기 위한 가장 강력한 조치이다. 전체 소켓이 일정비율 이하로 내려가면 다시 클라이언트 접근을 허용한다.

		Chapter 9. HTTPS 프로토콜(SSL3.0 또는 TLS1.0) 선택가능

기능개선/정책변경

		file-system 에서 파일시간 제공방식 설정가능
| Before. 로컬에 캐싱된 시간
| After. 원본의 Last-Modified 시간

		id5 ON 설정시 동작변경
| Before. cookie 헤더를 제거한다.
| After. cookie, set-cookie, set-cookie2 헤더를 제거한다. WM에서 경고메시지 강화

		WM - 가상호스트 삭제시 삭제 될 가상호스트 이름 명시

		WM - 설치시 cgi-bin경로에 어떤 파일도 설치하지 않도록 수정

		WM - RRD 메모리 그래프의 Scale을 1000에서 1024로 변경

버그수정

		:ref:`file-system`에서 파일접근에 실패했을 경우 비정상종료될 수 있던 증상

		WM - :ref:`origin-exclusion-and-recovery`에서 Cycle과 값이 서로 바뀌어서 저장되던 증상

1.3.19 (2014.10.21)

기능개선/정책변경

		trimming 정책변경
| Before. 모든 트랙을 Trimming한다.
| After. Audio/Video 트랙만을 Trimming한다. AllTracks속성을 통해 기존처럼 모든 트랙을 Trimming할 수 있다.

1.3.18 (2014.10.15)

버그수정

		dims 처리에서 클라이언트가 보낸 QueryString이 반영되지 않던 증상

		원본서버가 모두 배제되었을 때 특정조건에서 캐싱파일이 초기화되지 않던 증상

		WM - 보안정책 강화 및 가상호스트 이름에 공백이 없도록 Trim.

		WM - Unmount된 디스크의 상태를 올바르게 인식하지 못하던 증상

1.3.17 (2014.09.22)

버그수정

		SNMPWalk를 통해 :ref:`cache-host-traffic-filesystem`통계가 제공되지 않던 증상

		WM을 통해 DIMS설정 시 해당 가상호스트의 :ref:`env-vhost-find`가 초기화되던 증상

1.3.16 (2014.08.27)

버그수정

		file-system 에서 getattr함수가 많이 호출되면 메모리가 정리되지 않던 증상 및 관련 통계 수정

1.3.15 (2014.08.25)

버그수정

		잘못된 SNMP 접근으로 인해 비정상 종료되던 증상

1.3.14 (2014.08.13)

		최대 사용 메모리를 제한하도록 :ref:`env-cache-resource`할 수 있다.

		SNMP - 허가된 Community외엔 접근이 불가능하도록 :ref:`community`할 수 있다.

		WM - 서비스 Listen포트를 멀티로 설정할 수 있다. 클러스터 전용포트를 설정할 수 있다.

기능개선/정책변경

		파일 인덱싱 정책 변경
| Before. 완료된 파일만 인덱싱한다.
| After. 다운로드 중인 파일도 인덱싱한다.

		emergency 기본 값 OFF로 변경

		기본 Access로그에 sc-content-length필드 추가

1.3.13 (2014.07.21)

		WM - :ref:`id15`에서 조회한 파일을 다운로드 할 수 있다.

버그수정

		file-system 메모리 누수버그 수정

1.3.12 (2014.07.10)

기능개선/정책변경

		acl, Chapter 8. Bypass (Pass-through), id2 - 복합조건을 설정할 때 결합(AND) 키워드를 “&”에서 ” & “로 변경.
| Before. $IP[AP]&!HEADER[referer] 표현가능
| After. $IP[AP] & !HEADER[referer] 처럼 결합조건 사이에 반드시 공백필요

		SNMP - bytesHitRatio 타입이 음수를 표현할 수 있도록 gauge32에서 integer로 변경

		WM - 비대칭키 인증정책으로 변경

버그수정

		1MB보다 작은 MP4파일을 Chapter 16. Media 기능으로 서비스할 때 오동작하거나 비정상 종료되던 문제

		비정상 HTTP요청에 대한 예외처리 강화

1.3.11 (2014.06.19)

		마지막(=현재) 설정상태 확인(/conf/lastest) API 추가

기능개선/정책변경

		Chapter 8. Bypass (Pass-through) 개선
| Before. 명시적인 URL 또는 Cookie등으로 바이패스(또는 예외) 설정
| After. IP, Header, URL 또는 이를 결합한 복합조건으로 바이패스 가능. Cookie바이패스 삭제.

		클라이언트 트래픽 - 디렉토리 별 requestHitRaio 추가

		WM - hostname과 IP가 로그인하지 않은 상태에서 표시되지 않도록 수정

버그수정

		DNS가 Resolving응답을 정상적으로 주지만 주소가 없을 때 죽는 버그.

		origin.log, filesystem.log 롤링할 때 파일명이 GMT시간으로 생성되던 증상. 로컬시간으로 생성되도록 수정.

		/monitoring/hwinfo API에서 디스크 사용량이 표시되지 않던 증상

		WM - 마지막 접근시간이 올바르게 표시되지 않던 증상

1.3.10 (2014.06.03)

		모든 Disk가 장애로 배제되었을 때 동작방식(재투입, Bypass, 종료)을 :ref:`storage`할 수 있습니다.

		원본 HTTP요청의 Host헤더를 클라이언트가 보낸 값을 사용하도록 설정할 수 있습니다.

기능개선/정책변경

		파일캐싱 모니터링에서 QueryString 특수문자을 포함하는 URL도 모니터링할 수 있습니다.

		:ref:`monitoring_stats`에서 5분간 총 양이 함께 표기됩니다.

		HTTP POST요청캐싱과 Bypass정책이 동시에 설정된 경우, 서비스 정책이 재정립되었습니다

		Trimming정책 변경
| Before. Trimming의 끝(end) 시간에 가장 인접하도록 분할
| After. Trimming의 끝(end) 시간의 이전 Key-Frame으로 분할

버그수정

		MP4파일이 서비스되지 않고 CPU를 점유하던 증상

1.3.9 (2014.05.21)

기능개선/정책변경

		서비스 거부 조건에서 응답코드를 :ref:`acl`할 수 있습니다.
| Before. 에러 페이지에 “401 Access Denied”라고 명시
| After. 별도의 페이지 없이 설정된 응답코드로만 응답

버그수정

		잘못된 MP4영상 trimming 중 비정상 종료되던 증상.

		:ref:`filesystem`에서 (최초 :ref:`range`가 설정된 상태에서 캐싱되는 파일에 대해) 간헐적으로 잘못된 데이터를 서비스하던 증상.

		WM - Port바이패스 설정이 반영되지 않던 증상

1.3.8 (2014.04.30)

		로그가 롤링될 때 FTP로 전송하도록 :ref:`ftp`할 수 있습니다.

		Emergency모드가 발동하지 않도록 :ref:`emergency`할 수 있습니다.

		원본서버의 ETag를 인식하도록 :ref:`etag`할 수 있습니다.

		SNMP Community를 :ref:`community`할 수 있습니다.

		TTL적용 우선순위를 :ref:`id5`할 수 있습니다.

		HTTP의 POST Method요청의 Body를 캐싱키로 인식/무시하도록 :ref:`caching-policy-post-method-caching`할 수 있습니다.

버그수정

		hls-http-live-streaming 변환 중 비디오가 깨지던 증상.

		강제로 TTL을 만료시킨 컨텐츠가 304 Not Modified로 인해 TTL이 다시 정해질 때 설정상 가장 큰 값이 할당되던 증상. 설정상 가장 작은 값이 할당되도록 수정.

1.3.7 (2014.04.11)

버그수정

		domain.com:80 처럼 Port가 명시된 HTTP요청에 대해 가상호스트를 찾지 못하던 증상 (v1.3.4~1.3.6)

		잘못된 MP4영상분석 중 비정상 종료되던 증상

1.3.6 (2014.04.09)

		:ref:`admin-log-access-custom`를 설정할 수 있습니다.

		:ref:`view`를 통해 가상호스트를 통합하여 모니터링 할 수 있습니다.

		컨트롤 API(Purge, Expire, HardPurge, ExpireAfter)의 대상이 없을 때 HTTP 응답코드를 :ref:`caching`할 수 있습니다.

		FAQ에 :ref:`wowza`가 추가 되었습니다.

기능개선/정책변경

		admin-log
| Before. 시간 또는 크기 중 택1
| After. 시간과 크기 동시설정 가능

		WM - 페이지 상단에 서버의 호스트명과 IP를 보여줍니다.

버그수정

		WM - 설정파일 중 CDATA로 저장된 문자열이 Plain Text로 바뀌던 증상

1.3.5 (2014.04.02)

버그수정

		변경된 설정 적용 중 CPU사용량이 높아지며 서비스가 정상동작하지 않던 증상

		WM - 설정파일에 동일한 설정이 중복되어 표시되던 증상

1.3.4 (2014.03.26)

		FileSystem 업그레이드
| id9`(Trimming, HLS, DIMS등)이 HTTP와 동일하게 동작합니다.
| :ref:`filesystem`가 추가되었습니다.
| :ref:`id3, XML/JSON, cache, 상세통계 가 추가 되었습니다.

		정규표현식을 사용한 :ref:`url`가 가능합니다.

		시스템(OS)의 TCP 소켓상태를 실시간으로 모니터링 합니다. system, system, RRD Graph로 제공됩니다.

		가상호스트가 포트를 Listen하지 않도록 :ref:`caching`할 수 있습니다.

버그수정

		(FileSystem이 Mount되어 있을 때) STON의 정상종료가 오래 걸리던 증상

		WM - (FileSystem을 사용하지 않는 환경에서) 신규 가상호스트 추가시 FileSystem페이지 활성화되던 증상

		WM - 클러스터링 구성 중 대상 WM이 한번도 실행되지 않았었다면 설정이 적용되지 않던 증상

1.3.3 (2014.03.19)

버그수정

		갱신중인 파일을 MP4 Trimming으로 서비스 할 때 간헐적으로 비정상 종료되던 증상

1.3.2 (2014.03.05)

		WM을 통해 최신버전으로 Update 할 수 있습니다.

		STON의 설치/업그레이드 시 진행상황을 :ref:`install`에 기록합니다.

버그수정

		불완전한(=실시간으로 변환 중인) MP4 파일 캐싱 중 서비스가 멈추던 증상.

		WM에서 클러스터 전체 적용 시 가상호스트 파일이 초기화되던 증상

1.3.1 (2014.02.24)

버그수정

		MP4 파일 서비스 중 비정상 종료될 수 있던 증상.

		caching 기간 이외의 설정이 삭제되지 않던 증상

1.3.0 (2014.02.20)

		Chapter 17. File System 추가 - STON을 Linux VFS(Virtual File System)에 Mount합니다. 원본서버의 모든 파일을 로컬 파일 I/O로 사용할 수 있습니다.

		caching 추가 - 설정이 변경될 때마다 전체설정을 기록합니다. API(목록, 롤백, 다운로드, 업로드)와 :ref:`meta`SNMP를 통해 열람, 다운로드, 업로드, 복원이 가능합니다.

		has-http-live-streaming 추가 - 단일 MP4파일을 HLS(Http Live Streaming)으로 전송할 수 있습니다.

		통계 추가 - 전송 중 원본서버에서 먼저 소켓을 종료시킨 횟수

기능개선/정책변경

		Variables
| Before. 가상호스트가 삭제되거나 순서가 변경될 경우 [vhostIndex]가 재조정된다. 예를 들어 A(1), B(2), C(3)에서 B가 삭제된 경우 A(1), C(2)로 재조정된다.
| After. [vhostIndex]를 기억한다. 예를 들어 A(1), B(2), C(3)에서 B가 삭제되더라도 A(1), C(3)을 유지한다. 신규 가상호스트가 추가되면 비어있는 [vhostIndex]를 가진다. 예를 들어 가상호스트 D가 추가되면 A(1), D(2), C(3)로 재조정된다.

		설정 리로드 API 변경
| Before. /conf/reloadall, /conf/reloadserver, /conf/reloadvhosts가 별도로 존재하며 기능을 달리한다.
| After. /conf/reload로 일괄통일한다. 하위 호환성을 위해 기존 API를 유지한다.

v1.2.x

1.2.14 (2014.02.06)

기능개선/정책변경

		원본주소 DNS 정책 변경
| Before. 다른 가상호스트지만 원본주소로 같은 Domain을 사용한다면 Domain Resolving결과를 공유한다.
| After. 모든 가상호스트는 독립적으로 Domain Resolving을 수행하며 공유하지 않는다.

버그수정

		WM을 통한 Disk Hot-Swap 오동작 수정.

1.2.13 (2014.01.22)

버그수정

		특정 설정(no-cache-ttl`=ON, :ref:`caching-policy-renew`=ON, :ref:`vary 존재)에서 응답이 지연되거나 전송되지 않던 동작 수정.

1.2.12 (2014.01.02)

버그수정

		최신 NEXUS 기기에서 Trimming된 MP4/M4A가 재생되지 않던 증상 수정. (에러 메세지: The player doesn’t support this type of audio file.)

1.2.11 (2013.12.20)

기능개선/정책변경

		원본서버 Cach-Control 헤더 인식정책 변경
| Before. no-cache 또는 max-age만을 인식한다.
| After. no-cache, no-store, no-transform, muset-revalidate, proxy-revalidate, private, max-age를 구분하여 인식한다. custom은 무시한다.

		5분 평균 Request Hit율 계산방식 변경
| Before. 각 TCP_XXX의 (단위 시간에 대한)평균을 구한 뒤 Hit율 계산한다. 각 평균 값이 단위 시간보다 작을 때 누락될 수 있다.
| After. (평균을 내지 않고) 비율로만 계산하여 값이 누락되지 않는다.

1.2.10 (2013.12.13)

기능개선/정책변경

		HTTPS 통신에서 Access로그 범위 변경
| Before. 클라이언트가 SSL Server Finished 패킷을 온전히 수신한 HTTPS 트랜잭션만을 Access로그에 기록한다.
| After. 클라이언트가 SSL Server Finished 패킷을 온전히 수신하지 못했더라도 HTTP Request 패킷을 보냈다면 Access로그에 기록한다.

버그수정

		비정상 종료(물리적 세션 손실)된 HTTPS세션이 재사용될 때 이전에 요청되었던 컨텐츠와 현재 요청된 컨텐츠를 동시에 처리하던 증상. 2개의 HTTP 요청이 동시에 처리될 수 있었으며 이를 항상 현재 요청한 요청만이 유효하도록 수정.

1.2.9 (2013.12.09)

기능개선/정책변경

		bandwidth-throttling
| Before. Boost 시간동안 미디어를 전송할 때 헤더를 포함한다. 헤더가 클 경우 미디어 데이터가 전송되지 않아 버퍼링이 발생할 수 있다.
| After. 미디어 헤더는 대역폭 제한없이 전송한다. 헤더 전송이 완료된 후 Boost 시간이 시작된다.

버그수정

		WM 포트 변경 후 STON 업데이트 시 변경된 포트가 유지되지 않던 증상

1.2.8 (2013.11.14)

기능개선/정책변경

		접속하는 HTTP 클라이언트마다 고유번호(session-id)를 부여합니다. session-id는 Access로그와 Origin로그에 추가되어 연관성을 유추할 수 있습니다.

		API호출의 파라미터로 https://... 형식을 인식합니다.

버그수정

		:ref:`id5`가 ON으로 설정되어 있을 때 Content-Disposition헤더가 HTTP 응답에 2번 표시되던 증상

		Bandwidth-Throttling설정이 OFF일 때 Trimming이 동작하지 않던 증상

		WM계정에 특수문자(&)사용시 로그인 안되던 증상

1.2.7 (2013.10.17)

		HTTP Connection헤더를 :ref:`handling-http-requests-session-man`할 수 있습니다.

		HTTP Keep-Alive헤더를 :ref:`handling-http-requests-session-man`할 수 있습니다.

		FAQ에 “HTTP 연결관리 정책은?” 이 추가되었습니다.

기능개선/정책변경

		HTTP 응답에 Connection헤더와 Keep-Alive헤더를 기본으로 설정합니다.

1.2.6 (2013.10.14)

		원본서버의 “Server” 헤더를 클라이언트에게 전달하도록 :ref:`server`할 수 있습니다.

1.2.5 (2013.10.10)

		Origin By Client를 설정할 수 있습니다.

기능개선/정책변경

		인식할 수 있는 미디어파일에 대해 동적으로 Bandwidth-Throttling의 Bandwidth를 :ref:`bandwidth-throttling`할 수 있습니다. v1.2.4까지 존재했던 Media.Pacing은 이 기능에 포함되면서 삭제되었습니다.

버그수정

		극히 드물게 잘못된 문자열 참조 오류로 인해 비정상 종료되던 증상

1.2.4 (2013.09.27)

		Bandwidth-Throttling을 통해 전송 대역폭을 다양하게 :ref:`bandwidth-throttling`할 수 있습니다.
| Warning: 다음 버전에서 Media.Pacing은 :ref:`bandwidth-throttling`에 통합될 것입니다. 미디어 파일(현재 MP3, MP4, M4A 지원)의 Bitrate를 :ref:`bandwidth-throttling`에서 인식할 수 있는 형태가 될 것입니다. 현재는 기존 기능인 Media.Pacing이 더 우선하도록 개발되어 있습니다.

		가상호스트별로 클라이언트 최대 Bandwidth를 제한하도록 :ref:`id1`할 수 있습니다.

		헤더가 뒤에 있는 M4A파일을 헤더를 앞으로 옮겨서 서비스하도록 :ref:`mp4-m4a`할 수 있습니다.

		M4A파일을 원하는 구간만큼 잘라내어 서비스하도록 :ref:`trimming`할 수 있습니다.

기능개선/정책변경

		가상호스트 AccessControl 조건에 해당하는 클라이언트 요청에 대해 Redirect(302 moved temporarily)로 응답하도록 :ref:`acl`할 수 있습니다. HIT율은 TCP_REDIRECT_HIT로 별도로 수집됩니다.

		TCP_REDIRECT_HIT가 모든 통계에 추가되었습니다.

		가상호스트 AccessControl 조건을 AND로 결합하도록 :ref:`acl`할 수 있습니다.

버그수정

		클러스터가 구성되지 않던 증상 - IP를 추출할 때 Loopback이 추출되던 증상

1.2.3 (2013.09.05)

		DIMS(Dynamic Image Management System) - 원본서버의 이미지를 가공(잘라내기, 썸네일생성, 크기변경, 포맷변경, 품질조절, 합성)하도록 :ref:`dims`할 수 있습니다.

		MP3파일을 원하는 구간만큼 잘라내어 서비스하도록 :ref:`trimming`할 수 있습니다.

		특정 IP만 Listen하도록 :ref:`caching`할 수 있습니다.

		[WM] 신규 가상호스트를 생성할 때 기존 가상호스트를 선택해 복사할 수 있습니다.

		[WM] 가상호스트에서 DIMS를 설정할 수 있습니다.

기능개선/정책변경

		원본세션을 재사용하지 않도록 :ref:`id8`할 수 있습니다.

버그수정

		MP4 Trimming 중 비정상 종료되던 증상

		콘솔에서 수정한 가상호스트 설정이 WM의 클러스터에 반영되지 않던 증상

1.2.2 (2013.08.16)

		HTTP Post 요청을 캐싱하도록 :ref:`post`할 수 있습니다.

		STON이 서비스를 감당할 수 없는 상태에 :ref:`emergency`로 전환됩니다.

기능개선/정책변경

		서비스 허용/차단 조건에 부정(!IP, !HEADER, !URL)조건이 :ref:`acl`되었습니다.

		WM과 콘솔에서 동시에 설정을 변경할 때 WM에서 콘솔에서 변경한 내용을 인식하도록 변경되었습니다.

		WM에서 IE의 “호환성 보기” 메뉴를 숨기도록 변경되었습니다.

버그수정

		CPU 과부하 상태에서 바이패스 세션이 정상적으로 정리되지 않아 비정상 종료되던 증상

		(vary 설정환경에서) 원본서버에서 200 OK로 응답하지 않는 컨텐츠 서비스 중 비정상 종료되던 증상

		가상호스트명과 Alias가 같은 경우 Alias를 제거했을 때 가상호스트를 찾을 수 없던 증상

		WM 클러스터에 설정이 반영되지 않던 증상

1.2.1 (2013.07.26)

		MP4파일을 원하는 구간만큼 잘라내어 서비스하도록 :ref:`trimming`할 수 있습니다.

		원본서버에서 컨텐츠를 최초로 캐싱하거나 갱신할 때 Range요청을 하도록 :ref:`id9`할 수 있습니다.

버그수정

		WM에서 클러스터가 구성되지 않던 증상

		로그설정 변경 후 “/conf/reloadserver” API를 호출했을 때 반영되지 않던 증상

		SNMP에서 Host평균 통계가 평균이 아닌 합으로 계산되던 증상

		특정 상황에서 클라이언트 트래픽 통계수치가 비정상적으로 높게 계산되던 증상

1.2.0 (2013.07.01)

		:ref:`wm`이 추가되었습니다. 모든 설정이 WM을 통해 가능하며 MRTG(5종류 - 대쉬보드/5분/30분/2시간/1일)가 최대 18개월치 제공됩니다. WM을 통해 STON을 클러스터로 묶어서 쉽게 관리할 수 있습니다.

		Graph API가 추가되었습니다.

		원본서버의 Vary헤더를 인식하도록 :ref:`vary`할 수 있습니다.

		클라이언트와 통신하는 HTTP 요청/응답 헤더를 변경하도록 :ref:`id4`할 수 있습니다.

		원본서버의 모든 헤더를 클라이언트에게 전달하도록 :ref:`id5`할 수 있습니다.

		원본서버에서 Redirect된 컨텐츠를 추적하여 캐싱하도록 :ref:`redirect`할 수 있습니다.

		특정 URL에 대해서만 QueryString을 인식 또는 무시 하도록 :ref:`querystring`할 수 있습니다.

		매니저 포트 ACL마다 접근권한을 :ref:`env-host`할 수 있습니다.

		로그를 ON/OFF하도록 :ref:`admin-log`할 수 있습니다.

		로컬통신의 로그를 기록하지 않도록 :ref:`admin-log`할 수 있습니다.

		로컬통신의 통계를 수집하지 않도록 :ref:`id2`할 수 있습니다.

기능개선/정책변경

		로그 Trace접근이 있을 때 로그에 기록합니다.

		하드웨어 정보를 조회할 때 CPU를 높게 사용하던 증상이 개선되었습니다.

v1.1.x

1.1.17 (2013.05.27)

		Origin By Client를 설정할 수 있습니다.

기능개선/정책변경

		Transfer-Encoding으로 전송된 컨텐츠를 (전송지연 등의 이유로) 온전하게 캐싱하지 못한 경우 클라이언트 서비스정책 변경
| Before. 캐싱에 실패한 현재 컨텐츠를 서비스
| After. 이전에 온전하게 캐싱된 컨텐츠가 있다면 이전 컨텐츠로 서비스. 없다면 500 Internal Error.

버그수정

		RefreshExpired가 OFF인 상태에서 PartSize가 0보다 크게 설정된 경우 컨텐츠 갱신이 안되는 증상

1.1.16 (2013.05.15)

기능개선/정책변경

		리눅스 최대 파일개수 제한으로 File I/O가 실패하지 않도록 파일저장방식 변경

		정상동작을 위해 필요한 서브파일 점검 로그 추가

버그수정

		갱신중인 파일이 HardPurge될 때 비정상 종료되던 증상

		가상호스트별로 미디어 설정이 되지 않던 증상

		syslog 설정이 리로드되지 않던 증상

		OriginError로그에 syslog설정시 Info로그에 Inactive로 표시되던 증상

1.1.15 (2013.04.29)

		CPU 성능지표(Nice, IOWait, IRQ, SoftIRQ, Steal) 통계 추가 - system, :ref:`system`(System.27 ~ 36)

버그수정

		Track정보가 많은 MP4파일 분석 중 비정상 종료되던 증상

		HTTP Transfer-Encoding된 컨텐츠를 전송할 때 지연되던 증상

1.1.14 (2013.04.10)

		SNMP에 :ref:`cache-host`(=전체 가상호스트의 합)가 추가되었습니다.

기능개선/정책변경

		(파일이 없을 때) GeoIP파일목록 조회 결과 변경
| Before. 404 NOT FOUND
| After. 200 OK (“files”: [] 응답)

버그수정

		SSLv3에서 RSA_WITH_3DES_EDE_CBC_SHA로 Handshake가 되지 않던 증상 수정

		:ref:`https`속성에 빈 문자열 입력 시 오동작하던 증상

1.1.13 (2013.03.29)

버그수정

		디렉토리별 통계가 설정된 상태에서 누적통계가 OFF인 경우 비정상 종료되던 증상

		처음 접근되는 컨텐츠가 원본서버로부터 응답을 받기 전에 Purge되는 경우 클라이언트에게 응답을 주지 않던 증상

		HTTP 요청의 URI가 상대주소가 아니라 절대주소일 경우 서비스 안되던 증상

1.1.12 (2013.03.27)

		No-Cache요청이 올 경우 요청된 컨텐츠를 즉시 만료시키도록 :ref:`no-cache-ttl`할 수 있습니다.

		CentOS 패키지로 openSUSE에서 설치할 수 있습니다.

기능개선/정책변경

		No-Cache요청 인식조건 변경
| Before. “pragma: no-cache” 또는 “cache-control: no-cache”
| After. 기존 조건에 “cache-control: max-age=0” 추가

버그수정

		DNS갱신시 비정상 종료되던 증상

		최대 파일개수를 넘어갈 때 URL에 Vertical Bar(|)가 있는 파일들이 삭제되지 않던 증상

		HTTP 요청이 바이패스 될 때 HttpReqBodySize와 ClientInbound 값이 정확하지 않던 증상

1.1.11 (2013.03.21)

		Disk장애 조건을 :ref:`storage`할 수 있습니다. 장애로 판단된 디스크는 자동배제됩니다.

		Disk HotSwap용(실행 중 디스크 교체) API가 추가되었습니다.

		로그를 syslog로 전송하도록 :ref:`syslog`할 수 있습니다.

		원본서버에서 한번에 다운로드 받는 컨텐츠 크기를 :ref:`range`할 수 있습니다.

		GeoIP 파일목록 조회 API가 추가되었습니다.

		FAQ에 “멀티 도메인에 대한 SSL구성은?” 이 추가되었습니다.

기능개선/정책변경

		원본서버 장애코드 변경
| Before. 숫자로 표시
| After. 읽기 쉬운 형식으로 표시(Connect-Timeout, Receive-Timeout, Server-Close)

		원본서버 장애로그 기록시 주석으로 에러상황을 기록하던 것 제거. OriginErrorLog로 통합.

버그수정

		Manager Port변경 후 Reload할 때 비정상 종료되던 버그 수정

1.1.10 (2013.03.07)

		가상호스트마다 접근/차단조건(IP, GeoIP, URI, Header)을 :ref:`access-control-vhost`할 수 있습니다. 관련 통계가 추가되었습니다.

		도메인 Resolving이 실패할 경우 최근 사용된 IP들을 모두 사용하여 원본서버 부하를 분산하도록 설정할 수 있습니다.

		모니터링 API가 추가되었습니다.
| 가상호스트 목록 조회
| 하드웨어 정보 조회
| HTTPS CipherSuite 조회
| 접근차단 조건(acl.txt) 조회
| Expires헤더 조건(expires.txt) 조회

기능개선/정책변경

		로그 디스크 여유공간이 부족해질 경우 정책 변경
| Before. 개입하지 않음. 관리자가 명시적으로 삭제해야 함.
| After. Access로그만을 삭제. 만약 현재 사용 중인 로그를 지워야하는 상황이라면 새로운 로그 생성 후 삭제함.

		STON 종료 후 (vhosts.xml에서)삭제된 가상호스트 파일들에 대한 정책 변경
| Before. 개입하지 않음. 관리자가 명시적으로 삭제해야 함.
| After. 디스크 여유공간이 부족해지면 우선적으로 삭제.

		(가상호스트 별) 재구동 시 정상적으로 로딩되지 않은 디스크의 파일들에 대한 정책 변경
| Before. 서비스 중 자연히 덮어씌워지도록 남겨둠
| After. 해당 디스크를 신뢰할 수 없다고 판단하여 모두 무효화. 클린업 시간 또는 디스크 여유공간 부족 시점에 모두 삭제.

		도메인 Resolving결과 조회 API 변경.
| Before. /dns/list
| After. /monitoring/dnslist

		로그 트레이스 API 변경
| Before. /logtrace/...
| After. /monitoring/logtrace/...

		도메인 Resolving결과에 백업된 IP목록 추가

1.1.9 (2013.02.27)

		:ref:`httpd.apache.org/docs/2.2/mod/mod_expires.html`와 같이 Expires헤더를 :ref:`expires`할 수 있습니다.

		HTTPS의 CipherSuite를 :ref:`https`할 수 있습니다.

		파일을 관리(Purge/Expire/HardPurge/ExpireAfter)할 때 단일 URL만 입력하여도 QueryString까지 모두 관리하도록 :ref:`querystring`할 수 있습니다.

		ETag헤더 표시여부를 :ref:`etag`할 수 있습니다.

		Age헤더 표시여부를 :ref:`age`할 수 있습니다.

기능개선/정책변경

		HTTPS CipherSuite가 추가되었습니다.
| RSA_WITH_RC4_MD5
| TLS_RSA_WITH_3DES_EDE_CBC_SHA

		숫자(초=sec)로만 하던 표현을 인식하기 쉬운 문자형식으로 표현가능
| Before. /image/ad.jpg, 1800
| After. /image/ad.jpg, 6 hours

		SNMP에서 평균으로만 제공하던 수치를 누적으로 제공 (클라이언트/원본)
| 기존에 Count라는 표현을 Average로 변경. Average는 시간으로 나눈 평균을 의미
| 시간동안 집계된 전체 수는 Count로 표현
| 전체 요청/응답 개수 추가
| 응답코드별 응답/완료 개수 추가
| Request Hit Count 추가

		재시작/종료/캐시초기화 API를 호출할 때 “확인” 과정없이 호출할 수 있습니다.

		시스템 Load Average - 1분/5분/15분 통계추가

		모든 가상호스트의 원본서버를 초기화 할 수 있습니다.

버그수정

		Domain Resolving결과가 변경되었을 때 여러 가상호스트에 동시에 반영이 안되던 버그 수정

		Purge/Expire에서 QueryString이 붙어있는 URL이 처리안되던 버그 수정

1.1.8 (2013.02.21)

		클라이언트의 요청이 항상 같은 원본서버로 바이패스되도록 :ref:`get-post`할 수 있습니다.

		도메인 Resolving결과를 모니터링 할 수 있습니다.

		도메인 Resolving결과가 업데이트되었을 때 Info로그에 기록하도록 설정할 수 있습니다.

		원본서버 사용 및 배제/복구 상황을 초기화 할 수 있습니다.

		Clean-up 시간에 일정 기간동안 접근되지 않은 컨텐츠들을 삭제하도록 :ref:`caching`할 수 있습니다.

		Clean-up을 수행하는 API가 추가되었습니다.

기능개선/정책변경

		Origin 로그강화
| 접속한 포트 기록
| Bypass와 PrivateBypass구분 가능
| 원본서버가 보낸 Content-Encoding 헤더 기록

		Access 로그강화
| 클라이언트가 보낸 Accept-Encoding헤더 기록
| Bypass와 PrivateBypass구분 가능

		원본서버가 도메인명으로 설정되어 있을 때 기능개선
| Resolving결과가 즉시 반영.
| IP들에 대하여 개별로 배제/복구.

		Purge/Expire/HardPurge/ExpireAfter 호출결과 응답코드 수정
| 정상. 200 OK
| 가상호스트 없음. 502 BAD GATEWAY
| 잘못된 규격. 400 BAD REQUEST

		FAQ페이지 업데이트
| 원본서버 사용/배제/복구 정책은?
| 디스크 여유공간은 어떻게 보장되나요?

버그수정

		디스크 공간이 부족해도 공간확보가 되지 않던 버그 수정

1.1.7 (2013.02.16)

기능개선/정책변경

		Cent OS 5.5이상과 Ubuntu 10이상에서 동시접속 소켓이 10만을 넘으면 시스템 성능이 저하되며 소켓처리가 실패되는 증상을 확인하였습니다. 그러므로 최대 소켓을 10만으로 제한합니다.

버그수정

		사용 중인 소켓이 설정된 최대 소켓수를 넘어갔을 때 증설되지 않던 버그 수정

		Byte Hit Ratio결과가 부정확하게 표시되던 버그 수정

		누적통계 XML에서 ClientSession이 2번 나오던 버그 수정. (ClientActiveSession으로 변경)

		“abc*”로 패턴 설정했을 경우 “abc”처럼 패턴부분이 빈 문자열에 대해 인식하지 못하던 버그 수정

1.1.6 (2013.01.30)

		원본서버가 멀티로 구성되어 있을 때 항상 서버마다 동일하게 요청하도록 :ref:`origin-balancemode`한다.

기능개선/정책변경

		원본서버 부하분산 정책이 Session에서 RoundRobin으로 변경되었습니다.

		전역로그(Info, Deny, OriginError)를 시간으로 롤링시킨다.
| Before. 크기로만 롤링가능(Size속성만 존재)
| After. 시간/크기로 롤링가능 (Size속성 제거. Type, Unit속성 추가)

		잘못된 형식 또는 존재하지 않는 가상호스트를 대상으로 Purge/Expire/ExpireAfter/HardPurge 호출시 응답코드 변경
| Before. 200 OK
| After. 400 BAD REQUEST 또는 404 NOT FOUND

버그수정

		v1.1.5에서 원본서버 주소목록을 변경하고 리로드하였을 때 간헐적으로 비정상종료되던 증상

		원본서버에서 트랜잭션 완료 횟수를 수집할 때 Content-Length가 0인 응답이 누락되던 증상

1.1.5 (2013.01.28)

		클라이언트마다 바이패스 전용세션을 사용하도록 :ref:`get-post`합니다. GET요청과 POST요청을 별도로 설정할 수 있습니다.

		클라이언트 Cookie헤더에 따라 바이패스하도록 설정합니다.

기능개선/정책변경

		원본서버 주소가 빠졌을 때 동작방식 변경
| Before. 이미 연결되어 있다면 재사용한다.
| After. 즉시 재사용하지 않는다.

		:ref:`querystring`이 ON일 때 Purge/Expire동작방식 변경.
| Before. 입력된 URL과 해당 URL에 QueryString이 붙은 컨텐츠 Purge/Expire
| After. 입력된 URL만 Purge/Expire

		Active세션 산출방식 변경
| Before. 통계를 뽑는 시점에 데이터 전송이 이루어지고 있는 세션
| After. 데이터 전송이 발생한 Unique한 세션

		통계/성능 데이터가 추가/삭제되었습니다.
| system 통계 추가
| 종합통계에 요청회수, Active세션 통계 추가
| SSL클라이언트 세션 수 삭제

1.1.4 (2013.01.17)

		:ref:`https`를 IP와 Port로 다르게 바인딩할 수 있습니다.

기능개선/정책변경

		64GB장비에서 Free메모리 정책이 16GB로 변경되었습니다. (이전: 8GB)

		HTTP Method를 서비스 포트(80)로 호출할 수 있으며 :ref:`env-host`가 적용되도록 설정할 수 있습니다.

		전역설정(server.xml)의 :ref:`https`설정이 변경되지 않았어도 리로드할 때 인증서파일이 변경되었다면 반영합니다

1.1.3 (2013.01.15)

기능개선/정책변경

		한번에 기록할 수 있는 로그의 최대 크기를 10MB로 확장(이전: 2KB)

		POST로 보낼 수 있는 URL크기를 최대 1MB로 확장(이전: 10KB)

버그수정

		로그가 시간기준으로 롤링될 때 파일명(날짜)이 정확하지 않던 증상

1.1.2 (2013.01.14)

		GeoIP를 :ref:`acl`합니다. 클라이언트가 접속할 때 국가코드로 접속을 차단할 수 있습니다.

		접근차단된 IP를 :ref:`deny`에 기록합니다.

		로그를 동적으로 변경할 수 있습니다.

		Access로그에 캐시 HIT결과(TCP_HIT, TCP_MISS, ...) 추가

		관리용 HTTP Method가 추가되었습니다.

		POST를 사용하여 PURGE, HARDPURGE, EXPIRE, EXPIREAFTER할 수 있습니다.

		stonapi를 통해 전체/일부 도메인을 초기화할 수 있습니다.

		API목록을 열람하는 Help 명령어 추가

기능개선/정책변경

		ETag헤더를 제공할 때 따옴표(”...”)로 묶어서 표기

		HIT율 계산식 변경
| Before. 즉시응답 / 모든응답
| After. (TCP_HIT + TCP_IMS_HIT + TCP_REFRESH_HIT + TCP_REF_FAIL_HIT + TCP_NEGATIVE_HIT) / 모든 응답

		통계/성능 데이터가 추가/삭제되었습니다.
| id9 추가
| 평균통계에 통계를 생성한 날짜/시간 추가
| 클라이언트에서 STON으로 접속/종료하는 system 수 추가
| STON이 원본서버로 접속/종료하는 system 수 추가
| system, system 추가
| system 추가
| “Cached” 통계 제거

		정규표현식 성능향상 (X 20)

		fileinfo에서 미캐싱파일인 경우 status를 “OK”에서 “NOT_CACHED”로 변경”

버그수정

		SNMP에서 디스크정보(diskInfoPath, diskInfoStatus)를 얻을 때 Disk개수보다 큰 값이 diskIndex로 입력되면 비정상 종료되던 증상

		디스크가 꽉 차기전에 삭제되지 않던 증상. 디스크 Available공간을 남은공간으로 이해하도록 수정

		stonapi가 관리포트를 인지하지 못하던 증상

		Info로그에 “Download-Range” 메시지 제거

1.1.1 (2012.12.24)

		모든 가상호스트의 원본서버 이상동작을 하나의 파일(originerror)로 기록한다.

		HTTP Multi-Range요청을 처리할 수 있습니다.

		원본서버에서 no-cache로 응답하더라도 클라이언트에게는 max-age를 주도록 :ref:`ttl-time-to-live`할 수 있습니다.

기능개선/정책변경

		Accept-Encoding처리 정책변경.
| Before. 클라이언트와 원본서버의 압축이 호환되지 않으면 500에러로 응답한다.
| After. 클라이언트와 원본서버의 압축이 호환되지 않더라도 원본서버의 응답을 보낸다.

		다음과 같이 통계/성능 데이터가 추가되었습니다.
| 원본/클라이언트 Active세션수가 추가되었습니다.
| STON이 사용하는 CPU(Kernel, User) 성능수치가 추가되었습니다.

버그수정

		(설정: TTL=0, RefreshExpired=ON) 원본파일이 변경되었을 때 변경된 파일의 첫 응답코드를 500으로 보내던 증상

1.1.0 (2012.12.17)

		가상호스트별로 최대 Outbound를 제한하도록 :ref:`id1`할 수 있습니다.

		헤더가 뒤에 있는 MP4파일을 헤더를 앞으로 옮겨서 서비스하도록 :ref:`mp4-m4a`할 수 있습니다.

		MP4를 BiteRate만큼 낮은 대역폭으로 전송하도록 설정할 수 있습니다.

		최대 서비스 파일개수를 설정할 수 있습니다.

		최대 HTTP 세션 수를 :ref:`http`할 수 있습니다.

		API의 모든 함수를 리눅스 콘솔에서 호출할 수 있습니다.

		log-trace API를 통해 기록되는 로그를 실시간으로 받아볼 수 있습니다.

		쉘에서 STON을 :ref:`getting-started-update`할 수 있습니다.

기능개선/정책변경

		메모리 정책이 수정되었습니다. 최대 파일개수와 최대 소켓개수를 설정하여 컨텐츠 메모리크기를 조절할 수 있습니다. 자세한 내용은 :ref:`caching`를 참고하시기 바랍니다.

		도메인을 리졸빙(Resolving)한 결과를 캐싱합니다. 최소 1초, 최대 10초동안 캐싱됩니다.

		OriginOptions의 일부설정(user-agent, host, WL-Proxy-Client-IP, xff-x-forwarded-for)을 바이패스되는 HTTP요청에 선택적으로 적용할 수 있습니다.

		원본서버로부터 5xx계열의 응답코드가 캐싱된 경우 TTL이 만료되면 RefreshExpired가 OFF라도 항상 원본서버에서 갱신여부를 확인하고 서비스합니다.

		원본서버에 example.com/dir1 처럼 디렉토리명을 같이 지정할 수 있습니다. 클라이언트가 /test.jpg로 요청한다면 원본서버로 요청하는 주소는 example.com/dir1/test.jpg가 됩니다.

		Update Policy 설정의 기본 값이 OFF에서 ON으로 변경되었습니다.

		파일캐싱 모니터링 항목이 강화되었습니다.

		원본서버 주소가 도메인명이라면 별도로 <Host>를 설정하지 않아도 도메인 명으로 Host헤더를 보내도록 수정하였습니다.

		다음과 같이 통계/성능 데이터가 추가되었습니다.
| 원본/클라이언트 HTTP요청 개수가 통계에 추가되었습니다.
| 정상적으로 완료된 원본/클라이언트 HTTP 트랜잭션의 통계가 추가되었습니다.
| CPU와 Memory에 대한 통계가 추가되었습니다.
| Disk별 성능지표가 추가되었습니다.
| 원본로그에 cs-acceptencoding, sc-cachecontrol필드가 추가되었습니다.

버그수정

		원본서버 배제/복구 과정(주소 3개 이상)에서 후순위의 원본서버가 우선 복구됐을 때 비정상 종료되던 증상

		HTTP 요청에서 헤더가 키와 값 사이에 공백이 없으면 해석하지 못하던 증상

		로그를 “Size”로 설정했을 때 중간파일이 먼저 롤링되어 삭제되던 증상

		다음 상황에서 응답을 주지 않던 증상
| A파일을 원본서버에 요청하였으나 404 Not Found가 발생
| Memory Swap과정 중 A파일의 Body를 Memory에서 삭제 (A파일은 Meta만 존재하는 상태가 됨)
| 원본서버 장애 판단으로 배제됨
| A파일 서비스 요청이 들어옴
| A파일이 서비스를 위해 Body를 Load하려고 하였으나 실패함. 파일 초기화 수행
| A파일이 원본서버로 다운로드를 진행하려고 하였으나 원본서버 배제로 실패함
| 이후 A파일은 초기화 시점을 잃어버리고 초기화 상태로 존재함

		다음 상황에서 Expire/Purge가 성공된 것처럼 나오고 갱신되지 않던 증상
| A파일을 백그라운드로 갱신 시도함
| 원본서버에서 HTTP응답을 받았으나 전송지연이 발생함
| 전송지연으로 연결이 종료되거나 세션이 비정상 종료됐을 때 갱신실패가 제대로 정리되지 않는 상황이 발생함

v1.0.x

1.0.17 (2012.11.29)

		:ref:`hardpurge`가 API로 추가되었습니다. HardPurge한 컨텐츠는 완전삭제를 의미하며 복구가 불가능합니다.

		가상호스트별로 클라이언트 Keep-Alive시간을 :ref:`handling-http-requests-session-man`할 수 있습니다.

1.0.16 (2012.11.28)

		SNMPWalk가 동작하도록 SNMP의 기능이 전체적으로 수정되었습니다.
| SNMP의 [min]변수의 기본 값을 설정할 수 있습니다. SNMPWalk는 설정 값을 참조하여 [min]변수를 설정합니다.
| 전체 가상 호스트이름을 붙여서 제공하던 설정(VHostList)이 삭제되었습니다.
| 일부 OID값이 확장가능하도록 재조정되었습니다.

		루트(/) 디렉토리에 대한 Purge/Expire를 막도록 :ref:`caching`할 수 있습니다. 이 설정은 :ref:`caching`보다 우선합니다.

1.0.15 (2012.11.22)

		정상적으로 캐싱(200 OK)되어 있는 파일을 갱신하는 과정에서 원본서버로부터 4xx응답을 받았을 때 마치 304 not modified를 받은 것처럼 동작하도록 :ref:`id6`합니다. 이를 통해 서버의 일시적인 장애로부터 컨텐츠를 갱신하는 행위를 방지할 수 있습니다.

		컨텐츠의 만료시간을 강제로 지정하는 :ref:`expireafter`가 추가되었습니다.

		원본서버 주소에 포트가 같이 선언되어 있는 경우 포트바이패스가 되지 않던 문제가 수정되었습니다.

		누적통계가 ON인 상황에서 포트바이패스 통계를 집계하면 비정상 종료되던 문제가 수정되었습니다.

1.0.14 (2012.11.15)

		디렉토리별 통계를 설정했을 때 통계 모니터링 중 비정상종료 될 수 있는 문제가 수정되었습니다.

		커스텀 TTL 변경이 적용되지않던 증상이 수정되었습니다. 커스텀 TTL은 즉각적으로 반영되지 않고 TTL이 만료되는 시점에 재적용됩니다.

1.0.13 (2012.11.12)

		캐싱된 파일을 최초에 변경확인(If-Modified-Since)으로 접근할 경우 파일이 정상적으로 초기화되지 않던 버그가 수정되었습니다. 이 버그로 인하여 최초 응답시점에 500 Internal Error를 보내거나 TTL이 아주 짧게 설정되어 있는 경우 파일의 유효성이 문제가 될 수 있습니다.

		:ref:`caching-policy-renew`옵션이 ON인 경우 원본서버에서 컨텐츠가 변경되지 않았더라도(304 Not Modified) 최초 접근하는 클라이언트를 무조건 200 OK로 처리하던 증상이 수정되었습니다.

		정상적으로 캐싱(200 OK)되어 있는 파일을 갱신하는 과정에서 원본서버로부터 5xx응답을 받았을 때 마치 304 not modified를 받은 것처럼 동작하도록 :ref:`id6`합니다. 이를 통해 서버의 임시적인 장애때문에 컨텐츠를 무효화하여 원본 서버 트래픽을 가중시키는 행위를 방지할 수 있습니다.

		SNMP에서 응답 받을 가상호스트의 최대 개수를 :ref:`view`할 수 있습니다.

1.0.12 (2012.11.05)

		요약통계의 수치(원본 트래픽, 세션)가 맞지 않던 증상이 수정되었습니다.

1.0.11 (2012.10.31)

		원본서버가 모두 배제된 상황에서는 Purge/Expire가 동작하지 않습니다.

		특정 Purge명령이 Expire로 동작하도록 :ref:`caching`할 수 있습니다.

1.0.10 (2012.10.29)

		원본서버가 모두 배제된 상황에서 POST 요청이 클라이언트 세션 수에서 누락되던 증상이 수정되었습니다.

		원본서버 장애로 인해 Purge된 컨텐츠를 되살리는 과정에서 아직 디스크에 저장되지 않은 컨텐츠를 초기화하던 증상이 수정되었습니다.

1.0.9 (2012.10.22)

		원본서버 HTTP응답의 Content-Disposition헤더를 인지하도록 수정되었습니다.

1.0.8 (2012.10.19)

		원본서버에서 Transfer-Encoding: chunked옵션으로 응답을 줄 때 클라이언트에 Content-Length를 주지 않도록 수정하였습니다.

		클라이언트의 If-Range헤더를 인지하도록 수정하였습니다.

1.0.7 (2012.10.18)

		HTTP요청의 Host필드로 가상호스트를 찾을 때 대소문자 구분하지 않도록 수정되었습니다.

1.0.6 (2012.10.12)

		SSLv2 ClientHello를 인식하도록 개선되었습니다.

		바이패스 중 원본서버가 먼저 연결을 종료하였을 때 오동작하던 증상이 수정되었습니다.

1.0.5 (2012.10.08)

		원본서버 요청 시에 값이 존재하지 않는 QueryString항목이 누락되던 증상이 수정되었습니다.

1.0.4 (2012.10.04)

		원본서버 로그에 QueryString을 기록하지 않던 증상이 수정되었습니다.

1.0.3 (2012.09.28)

		설정파일을 리로드하여도 OriginOptions의 Host설정이 반영되지 않던 증상이 수정되었습니다.

1.0.2 (2012.09.27)

		설정파일을 리로드한 후 Custom TTL설정이 적용되지 않던 증상이 수정되었습니다.

1.0.1 (2012.09.20)

		query string 설정이 ON인 경우 Purge/Expire가 과도하게 CPU를 점유하던 문제가 개선되었습니다.

1.0.0 (2012.09.18)

		설정파일을 동적으로 :ref:`reload`할 수 있습니다. 서비스 중단 없이 가상호스트 추가, 삭제, 변경이 가능합니다.

		하드디스크의 최대사용량을 :ref:`storage`할 수 있습니다. 설정하지 않아도 언제나 디스크가 꽉차지 않도록 관리됩니다.

		가상호스트의 순서가 변경되더라도 항상 동일한 SNMP의 OID로 통계를 수집할 수 있도록 가상호스트의 OID를 :ref:`vhosts-xml`할 수 있습니다.

		Access 로그를 Apache와 Microsoft IIS형식으로 :ref:`access`할 수 있습니다.

		HTTP응답에 Via헤더 삽입을 :ref:`via`할 수 있습니다.

		클라이언트의 Accept-Encoding을 무시하도록 :ref:`accept-encoding`할 수 있습니다.

		콘솔 또는 API를 통해 STON 버전확인이 가능합니다.

		API를 통해 설정파일 열람이 가능합니다.

		원본서버 로그에 QueryString을 기록합니다.

		SSL을 통한 HTTP Post요청 바이패스가 오동작하던 버그가 수정되었습니다.

		가상호스트 서비스 포트설정이 <Address>에서 <Listen>으로 :ref:`caching`되었습니다.

		가상호스트별로 디스크 설정을 별도로 할 수 없습니다. 모든 가상호스트는 <Storage>를 통해 디스크를 공유하도록 :ref:`storage`되었습니다.

		Info로그가 보기 쉬운 형식으로 변경되었습니다.

		fileinfo응답의 시간표현이 “2012.09.03 14:29:50” 같이 읽기쉬운 형태로 변경되었습니다.

v0.9.x

0.9.6.7 (2012.08.23)

		바이패스 중 원본과 클라이언트 세션이 동시에 끊어질 때 STON이 비정상 종료되던 버그 수정

		원본서버가 “Transfer-Encoding: chunked”로 응답을 줄 때 Receive Timeout이 짧게 지정되던 버그 수정

		API응답의 MIME 타입을 application/json에서 text/plain으로 변경

0.9.6.6 (2012.08.01)

		특정 IP의 서비스(가상호스트) 접근을 차단 또는 허가하도록 :ref:`access-control-serviceaccess`할 수 있습니다.

		원본서버가 과부하 상태라고 :ref:`origin-busysessioncount`되면 만료된 컨텐츠의 TTL을 원본서버에게 물어보지 않고 :ref:`ttl`합니다.

		GET요청의 기본동작을 원본서버로 바이패스하도록 :ref:`bypass-getpost`할 수 있습니다.

		Origin로그에 바이패스 된 요청인지 기록합니다.

		바이패스 세션의 timeout, timeout 시간을 설정할 수 있습니다.

0.9.6.5 (2012.07.17)

		원본서버를 Active/Standby로 :ref:`env-vhost-standbyorigin`할 수 있습니다.

		Access로그에 클라이언트의 Range필드(cs-range)추가

		HTTP요청이 Invalid Range를 요청하는 경우 동작방식을 변경하였습니다. 기존에는 파일 크기를 벗어난 Range요청은 무조건 416 Requested Range Not Satisfiable으로 처리됐습니다. 이번 버전부터는 끝 오프셋이 파일 크기보다 클 경우 206 Partial Content로 처리됩니다. 시작 오프셋이 파일 크기보다 큰 경우는 기존과 동일하게 처리됩니다.

0.9.6.4 (2012.07.12)

		HTTP POST요청 처리시 비정상 종료되던 문제를 수정하였습니다.

		HTTP POST요청의 원본서버 바이패스 여부를 :ref:`bypass-getpost`할 수 있습니다.

		원본서버 HTTP 응답에 Content-Type헤더가 명시되어 있지 않은 경우 클라이언트에게도 Content-Type헤더를 주지 않습니다. (기존에는 text/html로 설정)

0.9.6.3 (2012.07.11)

		HTTPS 요청을 원본서버로 바이패스할 때 잘못된 메모리 참조로 인하여 오동작/비정상 종료되던 문제가 수정되었습니다.

		투명(Transparent) 모드를 지원합니다. STON과 원본서버 네트워크 구간 사이에 원본서버의 응답을 STON으로 포워딩하는 설정이 필요합니다.

		Expired된 컨텐츠를 서비스하기 전에 반드시 :ref:`caching-policy-renew`하도록 할 수 있습니다.

		더 이상 URLBypass통계를 별도로 수집하지 않습니다. 원본/클라이언트 트래픽 통계로 통합되었습니다.

		IBM WebLogic에서 클라이언트 Access로그를 남길 수 있도록 WL-Proxy-Client-IP 헤더를 추가할 수 있습니다.

		원본서버로 보내는 HTTP요청의 X-Forwarded-For헤더의 클라이언트 IP이후를 :ref:`xff-x-forwarded-for`할 수 있습니다.

		에러 페이지(500 Internal Error)에서 에러이유를 표시합니다.

		설정에서 문자열의 공백을 제거하지 않던 문제가 수정되었습니다. 모든 문자열의 좌우공백은 제거됩니다.

0.9.6.2 (2012.06.19)

		캐싱되어 있지 않은 파일의 가장 마지막 부분을 Range Request했을 때(Range의 범위가 1024 Bytes미만) 데이터가 전송되지 않던 버그 수정

0.9.6.1 (2012.06.14)

		CacheClear 기능 추가 - 로 설정된 모든 디스크를 삭제합니다. STON의 모든 서비스는 중단되며 작업이 완료된 뒤 자동으로 재개됩니다.

http://127.0.0.1:10040/command/cacheclear

		로그 파일의 OriginOptions의 Host설정 누락이 수정되었습니다.

		로그 파일의 Options설정표현이 “TTL”에서 “Options”로 변경되었습니다.

0.9.6 (2012.06.12)

		SNMP(Simple Network Monitoring Protocol)가 지원됩니다. STON은 항상 실행경로에 MIB(Management Information Base)파일을 생성합니다. STON의 SNMP는 가상호스트별, 실시간, 최근 1~60분까지의 통계를 제공합니다. 최초 실행시 비활성화되어 있으며 server.xml을 편집해 활성화 시킬 수 잇습니다.

<Server>

<Host>

<SNMP Port=”161” Status=”Active”>

<Allow>211.104.97.150</Allow>

</SNMP>

</Host>

</Server>

		원본서버에서 Content Length없는 응답이 올 경우, Origin로그에 원본서버 에러로 기록하지 않도록 변경되었습니다. 원본서버에서 일방적으로 연결을 종료한 경우, 만약 해당 세션이 Content Length가 없는 HTTP 트랜잭션을 수행 중이었다면 원본에러로 기록되지 않습니다.

 © Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

_images/icons_game.png
Full NIC Dashing User Large File Fast
Throughput Speed Delivery Range Handling

ad® @O %

_images/cacti16.png
V=T

= sroms P Oy 2160121621 |31 0160123 1621 |34,103y) Rk | G
T

STON(192.168.0.62) - Land Average

©s00

SToN(192.260.0.62) - meory

I

_images/wm_vstat3.png
el Service Status — Cached File Size Distribution

Daily (48 Hours, 5 Min Average)

File Cot

2022 00 02 04 06 08 10 12 14 16 15 20 22 00 G2 O4 06 02 10 12 14 16

Max Average current
| -8 45669.50 41067.82 40257.00
~16KB 444212.50 397255.90 438043.00
0 -3268 278950.00 255406.77 272189.00
0 ~64K8 52756.50 49309.22 51148.00
~128KB 9859.00 8887.99 8114.00
B ~256K8 7050.00 6372.50 5734.50
o-11. 6138.00 5558.00 5007.00
o -1018 1286.50 1140.95 1022.00
~100M8 18.00 15.95 13.00
B -s1218 0.00 0.00 0.00
| -168 0.00 0.00 0.00
468 0.00 0.00 0.00
ac8~ 0.00 0.00 0.00
B Total 838107.00 765015.11 821527.50

Weekly (12 Days, 30 Min Average)

000 k¢
£ sk
S a0k
200 k
o
T 1 o0 a2 o» a5 2
Hax Average Current
-k 47179.00 4093013 39602.008
o -6k a68ase25 3e2610.85 430921.08
52k 29502517 239730.32 26789152
0 ~s48 Sss01.33 ass2lz 5039317
0 -126K8 561553 a280.51 7380.33
B ~256K5 7002.25 596465 564258
i 6093.08 504912 524,33
@ -10m 1269.50 114553 93956
o ~100m 18,00 1334 1300
s 000 000 000
e 000 000 000
8 -8 000 000 000
8 4c6~ 0.00 0.00 000
B Total a75431.83 71230659 B08365.08

Monthly (7 Weeks, 2 Hour Average)

File Cot

05-20 06-03 06-10
Hax Average Current

| -8 47548.33 41197.50 39121.85
0 -16K8 483119.31 355736.77 426508.77
0 -3268 204678.15 237106.12 26495502
0 ~64K8 55313.25 48889.13 49594.75
~128KB 9659.38 8193.87 7848.95
B ~256K8 7196.71 6033.62 5593.95
o-11. 5980.65 5117.25 485817
~10m8 1431.79 1184.86 986.90
~100M8 25.00 1482 1315
B -s1218 0.00 0.00 0.00
| -168 0.00 0.00 0.00
468 0.00 0.00 0.00
0 468~ 0.00 0.00 0.00
B Total 890579.52 703473.95 799481.52

Yearly (18 Month, 1 Day Average)

w0
F
S
“ 200k
o
ol e @) o e o)
b aversge | currene
5o oS ans ason
8 I Jo e R
Sha Tamsis Bmeis e
g% BrE R
8 Tioee ey wms ey
e e mn e
i 330 heas G
8 2w [B3 S
8 oo 258 i 16
i oo oo olon
8T olon olon olon
836 olon olon olon
8 oo olon olo0

B Total 818149.55 702300.93 732302.82

search.html

 Navigation

 		
 index

 		STON Edge Server 2.3.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, WineSOFT Inc..
 Created using Sphinx 1.3.5.

_images/cacti02.png
T

s,
Wwases
mevze
Bazw

Pr
e
Bace
e

_images/urlrewrite1.png
hitp:isro.comjindex html VirtualHost
URL Rewriter

“www.dest.com”

_images/conf_media_mp4hls1.png
STON

video.mp4 video.mp4
[videomaus | [videoots | [(video_tts | [videomaus | [video_ots | [(video_tts |
[eeozi | [Voeoas] [veods] [eeoze | [Veeoas] [veeods]
[Video 515 | [video 615 | [Lvideo 715 | [videosts | [video6ss | [[video7ts |

[Ciomose] [o] (o]

[iowobe] [o] [weeoie]

_images/icons_file.png
File VO
Support

E

/STON

Web Server
Compliant

WOWZA
Compliant
[

Resource
Control

_images/perf_refreshexpired5.jpg
TTL Expired

TTL Expired

_images/log_rolling2.jpg
15(Tue)

access_ 20130114 _0000.log

16(Wed)

acoess 20130115 0000.log

access_20130116_00001og.

17(Thu) 18(Fri)

access 20130117 00004og.

_images/compression_1.png
GET Imain.ntmi

—Gﬂ'hmn htmi

200 0K

GET /main.ntmi
Accept-Encoding: gzip, deflate

/main.htm|

2000k

/main.html
(1000)

‘Content-Encoding: gzip
Content-Lengtt: 20430

_images/adv_vhost_link.png
cloud.com

nas.com

\@

® 404 Not Found

\@

m «

©200 0K

_images/cacti12.png
conmy W) LTI

Er— T T
T
e

o

_images/intro_cache2.png
the first request

o _ .
(6.

logic

(web, application

servers)

I~
15

the second request and on (with a

valid TTL)

D—»»
(s =

.“.\;‘

STON
=
De

logic

(web, application

servers)

N
-1

data

data

_images/bodyratio2.png
Hot Map

Body

_images/conf_fs9.png
@ fa.comiv.mpa*mpahis indexm3ud .
2 ja.com

Directory

_images/icons_news.png
Versatile Durable Dynamic Image

304 Turbo Bypass Service Management System

)

_images/intro_2layers.png
sl BB
customer y““

L/

data

L 4
®
a3

o

_images/cacti01.png
— -

[ETIIN | You are now logged into Cacti. You can follow these basic steps to get started.
fem Gras

+ Craate devices for network
£ Create graphs for your new devices

‘Grah Management. + View your new graphs

Grshrees
o Soueer

Geves

 cotiection methods |
oo Quener

ous i et

oo rempnes

Vet Temghes

s et
T
Click!t!

b

_images/wm_compose.jpg
Web Management

Configuation

Fles

Al

STON

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/plus.png

_static/comment.png

_static/file.png

_static/comment-bright.png

_static/up.png

_static/ajax-loader.gif

_images/log_rolling1.jpg
=y
access 20130114 0000.Jog.

access 20130114 0600.Jog

access 20130114 1200Jog

15(Tue)
00:00

e
access 20130114 1800Jog

_images/private_bypass1.jpg

_images/intro_cache1.png
customers

‘i, logic
‘o¥! - data
STON e "
internet | ad
D D&

_images/perf_refreshexpired.jpg
Waiting

_images/conf_media_mp4hls2.png
video.mp4

[omre] [ete] [voonis]

video.mp4

IM video_B.ls. video_7.ts

_images/wm_menu.jpg
System Configuration
Global Settings
General
Indexing
Global Log
Manager Access
Service Access
P
HTTPS Certficate
File System
URL Preprocessing
View

FTP
Virtual Host Mgmt.

Clustering

Content Control

Server Status

Service Status

_images/cacti07.png
Test (192.168.0.6)
*Create Graphs for this Host

*Data Source List
*Graph List

_images/perf_inmemory.png
Memory

Disk

_images/icons_media.png
HTTP Live
Streaming

HLS
-
[J

Pseudo- Bandwidth
streaming Control

o2 K

Range
Playback

_images/conf_fs7.png
/ STON N\

(VirtualHost)
winesoft.co.kr

Iwinesoft co krione/twolthree/ston jpg Joneltwolthree/ston jpg

File handle

_images/intro_graph_1.png
early growing mature

_images/conf_media_multitrimming.png
=

_images/conf_fs6.png
ftualtost)

1) fwinesoft.co.kr

File Attribute

Directory
jinesoft.co krlone fone
- -
Directory
3 Iwinesoft co krfone/two Joneftwo,
-
Directory
Iwinesoft.co krlone/twolthree Joneltwolthree
- -
Directory
g (Y
s fwinesoft.co krione/twolthree/stonjpg | fone/twolthreelston jpg
o

_static/up-pressed.png

_static/minus.png

_images/perf_mem_8_16.png
N
sron tasoe)
oo S

v
STON (9.6GB)

_images/time_taken.jpg
DNSEZE ESEE

DNSE 2 EECEY HTTP 2.3

HTTP S&

HTTP
saez

time-dns.

time-connect

time-firstbyte

time-complete

time-taken

_images/wm_cluseter4.png
Clustering — Virtual Host Status

search.winesoft.co.kr

shop.winesoft.co.kr

static. winesoft.co.kr

help.winesoft.co.kr
support winesoft co.kr

admin, winesoft co.kr

dev.winesaft.co.ki

qa.winesoft co.kr

Total

F01%

sa52%

068%

.44%

78.60%

10%

e

100.00%

9878%

% 18%

a2.70%

9a53%
a.41%

8.43%

018%

67.98%

B0.55%

72.02%

m48%

218%

%0.08%

W71%

8 19%

4

w23
ET%

1o1/103
3131
2323
85/88

121/123
61/65

1o1/101
50/50
72173
85/85

1a1/142

156/153

1027/1043

Client

121
w17
1818
a2

159/178

Outbound
21,55 Mbps
7,84 Mbps
1851 Mbps
17,30 Mbps
21,23 Mbps
1685 Mbps
182 Mbps
387 Mops
11,03 Mbps
1332 Mbps
36,44 Mbps

43,03 Mbps

28,1 Mbps

a5
5
12
12
16518
e
21/21
e
a5
&7
19722

121
/109

i
13
o1
512
2030
s
1728
00
12
13
29/38

1820
100163

Inbound

243 Mbps
188 Mbps
59 Mops
7,06 Mbps
762 Mbps
245 Mbps
1283 Mbps
576,40 kbps
1,02 Mbps
4.21 Mbps
822Mbps

2,05 Mbps
55,85 Mbps

_images/conf_fs3.png
HTTP

AFADHE - File /0,

MEDIA SERVER

HTTP

_images/wm_cluseter2.png
Clustring ~ Formation

Add a server to “stonCluster” cluster

svere []
Sverpot |]
e |]

Pl |

Cluster List

Server Address Import all settings to the server. Duplicate this server. Remove from the cluster

182.168.10.103 (localhost localdomain) Curent Server Curent Server Current Server

103.17.20,52 (QLRTOD1)

103.17.24,30 (QLATO02)

103.17.24,93 (OLATO03)

21,182.13.100 (QSTO10)

21,182.13.101 (QSTO1)

21,182.13.102 (05T012)

210.15.4.210 (QTCO8)

210.15.4.215 (QTC11)

210.15.4.218 (TC12)

182.168.10.84 (Iocalhost)

Import my

_images/wm_conf_global1.png
Global Settings ~ General Apply | Appl

General
Server Name % Default: System Name (ocalhost localdomain)
Administrator’s Email
o2[=]n [oo[<]m

] Delete fles unaccessed for | g day(s)

Disk Optimization Time

Setting Management
Backs up all the applied settings witnin | 30] days from today

10] settings accessible by SNMP (irom 1 to 100)

Overload Management
Close all new sockets at| g0000] connected socksts
Accept new sockets if the connected sockets decrease under | 75 %(60000)

Do not activate [] emergency mode at overload

_images/private_bypass3.jpg

_images/faq_wowza2.png
Virtual Host — Configuration (File System)

Vitual host [acosssible_[<] rom Filesystem
X Changes are effective immediately without restart,

Either File or Dirsctory is selectsd, depending on origin HTTF response cods. File |/O fails for unassianed HTTP response code.

File Directory

100 (Continue) [100 (Continue) =l

200 (0K) X 301 (Moved Permanently) X
302 (Moved Temporarily) X
400 (Bad Request) X
401 (Authorization Required) X
403 (Forbidden) X

ng

jdtn

